877 resultados para 6-HYDROXYPICOLINIC ACID
Resumo:
本学位论文共有5章。第一章报道白芍的化学成分及芍药苷的微生物转化研究成果;第二章报道天山雪莲的化学成分研究;第三章报道两面针的化学成分研究;第四章报道通关藤的化学成分研究成果;第五章概述了花椒属植物中最近十年报道的新化合物及药理研究情况。 在第1章的第一部分报道了白芍(Paeonia lactiflora Pall.)的化学成分。我们采用正、反相硅胶柱层析等各种分离方法,从白芍的干燥根中共分离出14个化合物,其中1个为新化合物,其结构通过波谱分析证实为没食子酰白芍苷,另外还有2个为首次从该植物中分离得到。第二部分报道了芍药苷的微生物转化生产芍药苷代谢素-I的研究,从15株厌氧菌中筛选出10株有转化活性的菌株,其中短乳杆菌Lactobacillus brevis AS1.12的转化活性最好,对其转化条件进行了初步的筛选,确定了相对合理的转化工艺。 在第2章报道了天山雪莲(Saussurea involucrate Kar.et Kir.)全草乙醇提取物化学成分的分离纯化和结构鉴定。通过正、反相硅胶柱层析等分离纯化和MS、NMR等波谱解析,共分离鉴定了28个化合物,结构类型分属于黄酮、倍半萜和木脂素等,其中2个新倍半萜化合物的结构分别表征为6α-羟基云木香酸6-β-D-吡喃葡萄糖苷和11βH-11,13-二氢去氢云木香内酯8α-O-(6′-乙酰)-β-D-吡喃葡萄糖苷。 第3章报道了两面针(Zanthoxylum nitidum (Roxb.)DC.)干燥根的乙醇提取物化学成分的分离纯化和结构鉴定。通过正、反相硅胶柱层析等分离纯化和MS、NMR等波谱解析以及X-射线单晶衍射,共分离鉴定了16个生物碱,结构类型分属于苯并啡啶类、喹啉类和阿朴啡类等,其中2个新苯并啡啶类生物碱的结构分别表征为二聚双氢两面针碱和丙酮基双氢崖定椒碱。 第4章报道了通关藤(Marsdenia tenacissima (Roxb.) Wight et Arn.)水提取物化学成分的分离纯化和结构鉴定。通过正、反相硅胶柱层析等分离纯化和MS、NMR等波谱解析以及X-射线单晶衍射,共分离鉴定了14个化合物,结构类型均属于C21多羟基甾醇,其中4个新化合物tenacigenoside A, tenacigenoside B, tenacigenoside C和tenacigenoside D的结构分别表征为3-O-6-deoxy-3-O-methyl-β-D-allopyranosyl-(1→4)-β-D-oleandropyranosyl-17β-tenacigenin B (62), 3-O-2,6- dideoxy-4-O-methyl-D-lyxo-hexopyranosly-11α-O- methylbutyryl-12β-O-acetyl-tenacigenin B (63), 3-O-6-deoxy-3-O-methyl-β-D- allopyranosyl-(1→4)-β-D-oleandropyranosyl-11α-O-tigloyl-tenacigenin C (64)和3-O-6-deoxy-3-O-methyl-β-D-allopyranosyl-(1→4)-β-D-oleandropyranosyl-11α-O-2- methylbutyryl-tenacigenin C (65)。 第5章概述了花椒属植物的化学成分及药理活性研究进展。 This dissertation consists of 5 chapters. The first chapter elaborate the phytochemical investigation of Paeonia lactiflora Pall., and microbial transformation of paeoniforin. The second, third and four chapters elaborate the phytochemical investigation of Saussurea involucrate Kar.et Kir., Zanthoxylum nitidum (Roxb.) DC. and Marsdenia tenacissima (Roxb.) Wight et Arn., respectively. Chapter 5 is a review on chemical constituents and bioactivities of Zanthoxylum species. The part one of chapter 1 focus on the isolation and identification of chemical constituents from P. lactiflora. Fourteen compounds were isolated from the roots of P. lactiflora by repeat column chromatography over normal and reversed phase silica gel. Among them, one is a new compound and the structure was suggested as galloyl-albiflorin by spectral evidence. In addition, two compounds were firstly reported in this plant. The part 2 is about microbial transformation of paeoniforin. Chapters 2, 3 and 4 were isolations and identifications of chemical constituents from S. involucrate, Z. nitidum and M. tenacissima, respectively. From the aerial parts of S. involucrate, 28 compounds including 7 flavonoids and 13 sesquiterpenoids were isolated and identified. Among them, 2 new compounds were characterized as 6α-hydroxycostic acid 6-β-D-glucoside and 11βH-11,13-dihydrodehydro- costuslactone 8α-O-(6'-acetyl)-β-D-glucoside, respectively, by means of spectroscopic analysis. Otherwise, 11 ones were firstly reported from this plant. The third chapter is about the phytochemical investigation of Z. nitidum. Sixteen compounds were isolated and identified. Among them, 2 new benzophenanthridine alkaloids were characterized as 8-acetonyldihydrofagaridine and 1,3-bis(8-dihydronitidinyl)-acetone by spectroscopic analysis. The fourth chapter is about the phytochemical investigation of M. tenacissima. Fourteen compounds were isolated and identified. Among them, 4 new compounds, tenacigenosides A~D, were characterized as 3-O-6-deoxy-3-O-methyl-β-D-allopyranosyl-(1→4)-β-D-oleandropyranosyl-17β- tenacigenin B, 3-O-2,6-dideoxy-4-O-methyl-D-lyxo-hexopyranosly-11α-O-methyl butyryl-12β-O-acetyl-tenacigenin B, 3-O-6-deoxy-3-O-methyl-β-D-allopyranosyl- (1→4)-β-D-oleandropyranosyl-11α-O-tigloyl-tenacigenin C, and 3-O-6-deoxy-3-O- methyl-β-D-allopyranosyl-(1→4)-β-D-oleandropyranosyl-11α-O-2-methylbutyryl- tenacigenin C. Chapter 5 is a review on recent progress in bioactive constituents from plants of Zanthoxylum species.
Resumo:
Laccase has been immobilized on the carbon nanotubes modified glassy carbon electrode surface by adsorption. As-prepared laccase retains good electrocatalytic activity to oxygen reduction by using 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) as the mediator. It can be used as a biosensor for the determination of catechol with broad linear range.
Resumo:
Due to the potentially adverse effects of the chromium (VI) on the human health and also on the environment, the quantitative determination of Cr(VI) is of particular interest. This work herein reports a facile, selective and rapid colorimetric determination of Cr(VI) based on the peroxidase substrate-2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt (ABTS) as the color developing agent. ABTS, which was usually acted as peroxidase substrate for the enzyme linked immunosorbent assay, is used here for the first time to fabricate the "signal-on" colorimetric Assay for Cr(VI).
Resumo:
Mercury ion (Hg2+) is able to specifically bind to the thymine-thymine (T-T) base pair in a DNA duplex, thus providing a rationale for DNA-based selective detection of Hg2+ with various means. In this work, we for the first time utilize the Hg2+-mediated T-T base pair to modulate the proper folding of G-quadruplex DNAs and inhibit the DNAzyme activity, thereby pioneering a facile approach to sense Hg2+ with colorimetry. Two bimolecular DNA G-quadruplexes containing many T residues are adopted here, which function well in low- and high-salt conditions, respectively. These G-quadruplex DNAs are able to bind hemin to form the peroxidase-like DNAzymes in the folded state. Upon addition of Hg2+, the proper folding of G-quadruplex DNAs is inhibited due to the formation of T-Hg2+-T complex. Ibis is reflected by the notable change of the Soret band of hemin when investigated by using UV-vis absorption spectroscopy. As a result of Hg2+ inhibition, a sharp decrease in the catalytic activity toward the H2O2-mediated oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt (ABTS) is observed, accompanied by a change in solution color. Through this approach, aqueous Hg2+ can be detected at 50 nM (10 ppb) with colorimetry in a facile way, with high selectivity against other metal ions.
Resumo:
Some G-quadruplex DNA aptamers have been found to strongly bind hemin to form DNAzymes with peroxidase-like activity. To help determine the most suitable DNAzymes and to understand how they work, five previously reported G-quadruplex aptamers were compared for their binding affinity and then the potential catalytic mechanism of their corresponding hemin-G-quadruplex DNAzymes was explored. Among these aptamers, a G-quadruplex named AGRO100 was shown to possess the highest hemin-binding affinity and the best DNAzyme function. This means that AGRO100 is the most ideal candidate for DNAzyme-based analysis. Furthermore, we found the peroxidase-like activity of DNAzyme to be primarily dependent on the concentration of H2O2 and independent of that of the peroxidase substrate (that is, 2,2-azino-bis(3-ethytbenzothiazoline-6-sulfonic acid)diammonium salt). Accordingly, a reaction mechanism for DNAzyme-catalyzed peroxidation is proposed. This study provides new insights into the G-quadruplex-based DNAzymes and will help us to further extend their applications in the analytical field.
Resumo:
A novel sulfonated diamine monomer, 2,2'-bis(p-aminophenoxy)-1,1'-binaphthyl-6,6'-disulfonic acid (BNDADS), was synthesized. A series of sulfonated polyimide copolymers containing 30-80 mol % BNDADS as a hydrophilic component were prepared. The copolymers showed excellent solubility and good film-forming capability. Atomic force microscopy phase images clearly showed hydrophilic/hydrophobic microphase separation. The relationship between the proton conductivity and degree of sulfonation was examined. The sulfonated polyimide copolymer with 60 mol % BNDADS showed higher proton conductivity (0.0945-0.161 S/cm) at 20-80 degrees C in liquid water. The membranes exhibited methanol permeability from 9 x 10(-8) to 5 X 10(-7) cm(2)/s at 20 degrees C, which was much lower than that of Nafion (2 x 10(-6) cm(2)/s). The copolymers were thermally stable up to 300 degrees C. The sulfonated polyimide copolymers with 30-60 mol % BNDADS showed reasonable mechanical strength; for example, the maximum tensile strength at break of the sulfonated polyimide copolymer with 40 mol % BNDADS was 80.6 MPa under high moisture conditions. The optimum concentration of BNDADS was found to be 60 mol % from the viewpoint of proton conductivity, methanol permeability, and membrane stability.
Resumo:
The reaction of Cu(BF4)(2) with pyridine-2,6-dicarboxylic acid (H(2)pydc) and trans-1,2-bis(4-pyridyl)ethylene (bpe) under hydrothermal conditions afforded a porous mixed-valence (CuCuII)-Cu-I coordination polymer. Coexistence of tetrameric and decameric water clusters within the channels of the complex leads to a novel water chain. The metal-organic framework provides both hydrophilic and hydrophobic environments for stabilizing the clusters and retains its integrity upon dehydration and rehydration.
Resumo:
The carbon nanotubes-chitosan (CNTs-CS) composite provides a suitable biosensing matrix due to its good conductivity, high stability, and good biocompatibility. Enzymes can be firmly incorporated into the matrix without the aid of other cross-linking reagents. The composite is easy to form insoluble film in solution above pH 6.3. Based on this, a facilely fabricated amperometric biosensor by entrapping laccase into the CNTs-CS composite film has been developed. At pH 6.0, the fungi laccase incorporated into the composite film remains better catalytic activity than that dissolved in solution. The system is in favor of the accessibility of substrate to the active site of laccase, thus the affinity to substrates is improved greatly, such as 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS), catechol, and 0, with K. values of 19.86 mu M, 9.43 mu M, and 3.22 mM, respectively. The major advantages of the as-prepared biosensor are: detecting different substrates (ABTS, catechol, and 02), possessing high affinity and sensitivity, durable long-term stability, and facile preparation procedure. On the other hand, the system can be applied in fabrication of biofuel cells as the cathodic catalysts based on its good electrocatalysis for oxygen reduction.
Resumo:
海洋生物具有产生丰富多样的次生代谢产物的能力,其中红藻门松节藻科海藻卤代次生代谢产物以其结构新颖、生物活性独特引起了天然产物化学家的重视。 本论文对海洋红藻多管藻和松节藻进行了化学成分研究,综合利用各种色谱学方法 (硅胶柱层析、反相硅胶柱层析、凝胶Sephadex LH-20柱层析、半制备高效液相色谱以及重结晶等) 和现代波谱学技术 (IR、UV、EI-MS、FAB-MS、HR-ESI-MS、CD、1H-NMR、13C-NMR、DEPT、1H-1H COSY、HSQC、HMBC等),共分离鉴定了100个化合物,发现25个新化合物。 从多管藻中分离鉴定38个化合物 (24个溴酚化合物),其中7个新化合物 (均为溴酚化合物),包括1个菲并呋喃结构溴酚 (P1), 2个二氢菲结构溴酚 (P2, P3),1个含 5,7-dihydrodibenzo[c,e]oxepine 结构溴酚 (P4)和3个简单溴酚 (P5, P6, P7)。P1 (urceolatin) 属首例报道的具有菲并呋喃结构的天然产物,从该种中分离的化合物P12 和 P13 可能是其生源合成的前体。P2和P3为第二例报道的具有二氢菲结构的溴酚化合物。 从松节藻中分离并鉴定了62 个化合物,其中18 个为溴酚类新化合物,44 个为已知化合物。化合物具有多变的取代基团,包括2 个脲基吡咯烷酮溴酚化合物 (R1, R2), 4 个γ-脲基丁酸溴酚化合物 (R3-R6),5 个酰胺溴酚化合物 (R7, R8, R9, R13, R14),1 个溴酚砜化合物 (R12), 1 个Xanthene 溴酚化合物 (R10)和5 个简单溴酚化合物 (R11, R15, R16, R17, R18)。R1、R2 是首例报道的含有脲基吡咯烷酮片段的天然产物,R10 为首次报道的溴代Xanthene 类天然产物。 对分离到的化合物进行了清除DPPH 和ABTS两种自由基活性的筛选。结果发现溴酚类天然产物具有显著的DPPH自由基清除活性,其中R3 的IC50 仅为3.3 μM, 其活性强度约为阳性对照BHT (IC50 为82.1 μM) 的24倍。另外,溴酚类天然产物对ABTS自由基有较强的清除活性,R2 的TEAC(Trolox efficency activity capacity)值为5.2 mM,约为阳性对照 (ascorbic acid, 1.02 mM) 的 5 倍。初步的构效关系研究发现,稠环分子、多羟基和邻位甲氧基等结构特点能有效增强DPPH 自由基清除活性;特殊取代基如脲基、吡咯烷酮等含有氮原子的基团,能有效增强ABTS 自由基清除活性,多羟基、溴代等结构特点也使其活性有所增强。 本研究结果丰富了海藻卤代化合物的结构类型,为多管藻和松节藻的合理利用提供了一定的科学依据。
Resumo:
Eleven known compounds were isolated from the roots of Euphorbia wallichii for the first time. They were elucidated to be three triterpenoids, β-amyrin (1), β-amyrin acetate (2) and 3β-acetoxy-lupenol (3), one nor-triterpene peroxide baccatin (4), two caffeic esters (5a, 5b), palmitic acid-2,3-dihydroxypropanenyl ester (6), palmitic acid (7), scopoletin (8), β-sitosterol (9) and daucosterol (10) on the basis of spectral methods. Among them, compound 5a, 5b were reported firstly in the spurge family. And the NMR assignments of compounds 5a and 5b were given for the first time.
Jiangella gansuensis gen. nov., sp nov., a novel actinomycete from a desert soil in north-west China
Resumo:
A novel actinomycete strain, designated YIM 002(T), was isolated from a desert soil sample in Gansu Province, north-west China. This actinomycete isolate formed well-differentiated aerial and substrate mycelia. In the early stages of growth, the substrate mycelia fragmented into short or elongated rods. Chemotaxonomically, it contained LL-2,6-diaminopimelic acid in the cell wall. The cell-wall sugars contained ribose and glucose. Phospholipids present were phosphatidylinositol mannosides, phosphatidylinositol and diphosphatidylglycerol. MK-9(H-4) was the predominant menaquinone. The major fatty acids were anteiso C-15:0 (35.92%), anteiso C-17:0 (15.84%), iso C-15:0 (10.40%), iso C-16:0 (7.07%) and C(17:10)w8c (9.37%). The G+C content of the DNA was 70 mol%. Phylogenetic analysis and signature nucleotide data based on 16S rRNA gene sequences showed that strain YIM 002(T) is distinct from all recognized genera of the family Nocardioidaceae in the suborder Propionibacterineae. On the basis of the phenotypic and genotypic characteristics, it is proposed that isolate YIM 002(T) be classified as a novel species in a new genus, Jiangella gansuensis gen. nov., sp. nov. The type strain is YIM 002(T) (= DSM 44835(T) = CCTCC AA 204001(T) = KCTC 19044(T)).
Resumo:
Epidemiological, biochemical, animal model and clinical trial data described in this overview strongly suggest that polyunsaturated fatty acids, particularly n-6 fatty acids, have a role in the pathogenesis and treatment of multiple sclerosis (MS). Data presented provides further evidence for a disturbance in n-6 fatty acid metabolism in MS. Disturbance of n-6 fatty acid metabolism and dysregulation of cytokines are shown to be linked and a "proof of concept clinical trial" further supports such a hypothesis. In a randomised double-blind, placebo controlled trial of a high dose and low dose selected GLA (18:3n-6)-rich oil and placebo control, the high dose had a marked clinical effect in relapsing-remitting MS, significantly decreasing the relapse rate and the progression of disease. Laboratory findings paralleled clinical changes in the placebo group in that production of mononuclear cell pro-inflammatory cytokines (TNF-alpha, IL-1 beta) was increased and anti-inflammatory TGF-beta markedly decreased with loss of membrane n-6 fatty acids linoleic (18:2n-6) and arachidonic acids (20:4n-6). In contrast there were no such changes in the high dose group. The improvement in disability (Expanded Disability Status Scale) in the high dose suggests there maybe a beneficial effect on neuronal lipids and neural function in MS. Thus disturbed n-6 fatty acid metabolism in MS gives rise to loss of membrane long chain n-6 fatty acids and loss of the anti-inflammatory regulatory cytokine TGF-beta, particularly during the relapse phase, as well as loss of these important neural fatty acids for CNS structure and function and consequent long term neurological deficit in MS.
Resumo:
Samples were taken at each stage of brewing (malt, milling, mashing, wort separation, hop addition, boiling, whirlpool, dilution, fermentation, warm rest, chill-lagering, beer filtration, carbonation and bottling, pasteurization, and storage). The level of antioxidant activity of unfractionated, low-molecular-mass (LMM) and high-molecular-mass (HMM) fractions was measured by the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfortic acid) radical cation (ABTS(.+)) and ferric-reducing antioxidant power (FRAP) procedures. Polyphenol levels were assessed by HPLC. The LMM fraction ( 0.001) in catechin and ferulic acid levels. Increases in antioxidant activity levels were observed after mashing, boiling, fermentation, chill-lagering, and pasteurization, in line with previous studies on lager. Additionally, increases in the level of antioxidant activity occurred after wort separation and carbonation and bottling and were accompanied by increases in levels of most monitored polyphenols. Data from the ABTS(.-) and FRAP assays indicated that the compounds contributing to the levels of antioxidant activity responded differently in the two procedures. Levels of ferulic, vanillic, and chlorogenic acids and catechin accounted for 45-61% of the variation in antioxidant activity levels.
Resumo:
Aqueous extracts were prepared from five barley crystal malts (color range 15-440 degrees EBC, European Brewing Convention units). Antioxidant activity was determined by using the 2,2'-azinobis(3-ethylbenothiazoline-6-sulfonic acid) (ABTS(.+)) radical cation scavenging method. Antioxidant activity increased with increasing color value although the rate of increase decreased with increasing color value. Color was measured in CIELAB space. Extracts of the 15, 23, and 72 degrees EBC malts followed the same dilution pathway as did the 148 degrees EBC sample at higher dilution levels, indicating that they could each be used to give the same color by appropriate dilution. The 440 degrees EBC sample followed a different dilution pathway, indicating that different compounds were responsible for color in this extract. Fifteen selected volatile compounds were monitored using gas chromatography/mass spectrometry (GC/MS). Levels of methylpropanal, 2-methylbutanal, and 3-methylbutanal were highest for the 72 degrees EBC sample. When odor threshold values of the selected compounds were taken into account, 3-methylbutanal was the most important contributor to flavor., Relationships between levels of the lipid oxidation products, hexanal and (E)-2-nonenal, and antioxidant activity were complex, and increasing antioxidant activity for samples in the range of 15-148 degrees EBC did-not result in reduced levels of these lipid-derived compounds. When different colored malt extracts were diluted to give the same a* and b* values, calculated antioxidant activity and amounts of 3-methylbutanal, hexanal, and (E)-2-nonenal decreased with increasing degrees EBC value.
Resumo:
The incorporation of melamine into food products is banned but its misuse has been widely reported in both animal feeds and food. The development of a rapid screening immunoassay for monitoring of the substance is an urgent requirement. Two haptens of melamine were synthesized by introducing spacer arms of different lengths and structures on the triazine ring of the analyte molecular structure. 6-Aminocaproic acid and 3-mercaptopropionic acid were reacted with 2-chloro-4,6-diamino-1,3,5-triazine (CAAT) to produce hapten 1[3-(4,6-diamino-1,6-dihydro-1,3,5-triazin-2-ylamino) hexanoic acid] and hapten 2[3-(4,6-diamino-1,6-dihydro-1,3,5-triazin-2-ylthio) propanoic acid]. respectively. The molecular structures of the two haptens were identified by I H nuclear magnetic resonance spectrometry, mass spectrometry and infrared spectrometry. An immunogen was prepared by coupling hapten 1 to bovine serum albumin (BSA). Two plate coating antigens were prepared by coupling both haptens to egg ovalbumin (OVA). A competitive indirect enzyme-linked immunosorbent assay (ciELISA) was developed to evaluate homogeneous and heterogeneous assay formats. The results showed that polyclonal antibodies with high titers were obtained, and the heterogeneous immunoassay format demonstrated a better performance with an IC50 of 70.6 ng mL(-1), a LOD of 2.6 ng mL(-1) and a LOQ of 7.6 ng mL(-1). Except for cyromazine, no obvious cross-reactivity to common compounds was found. The data showed that the hapten synthesis was successful and the resultant antisera could be used in an immunoassay for the rapid and sensitive detection of this banned chemical. (C) 2010 Elsevier B.V. All rights reserved.