945 resultados para 57-438
Resumo:
The main objective of this investigation was to study distribution of main chemical constituents and several minor elements in sediment sections drilled during DSDP Legs 56 and 57 in the Japan Trench, in order to infer geochemical features of different lithologic types of sediments, and to find out how the geochemistry is associated with major lithologic constituents, such as terrigenous detrital matter, clay, volcanic ash, and biogenic particles. The geochemical data may help to indicate the nature of the sediments and to interpret sedimentation processes. The analyzed samples seem to be representative of most lithologic units, sub-units, and sediment types drilled at all sites on both legs, except for some shallow-water deposits at Sites 438 and 439. We analyzed bulk-sediment composition by X-ray fluorescence (Kuzmina and Turanskaya) and routine wet-chemical methods (Mikhailov); amorphous SiO2, extracted in a boiling sodium carbonate solution (Analythical Laboratory, P. P. Shirshov Institute of Oceanology); Cr, Zn, Cu, Ni, Co, and Al by atomic absorption (Gordeev); and Sn, Pb, Zn, Cu, Ni, Co, Cr, V, B, and Ag by quantitative spectrographic analyses in both bulk samples and granulometric fractions (Mikhailov). In addition, Fe, Ti, Mn, and CaCO3 have been determined in selected samples by routine wet-chemical methods (Analytical Laboratory, P. P. Shirshov Institute of Oceanology). Murdmaa was responsible for interpretation of the results.
Resumo:
Detrital modes for 524 deep-marine sand and sandstone samples recovered on circum-Pacific, Caribbean, and Mediterranean legs of the Deep Sea Drilling Project and the Ocean Drilling Program form the basis for an actualistic model for arc-related provenance. This model refines the Dickinson and Suczek (1979) and Dickinson and others (1983) models and can be used to interpret the provenance/tectonic history of ancient arc-related sedimentary sequences. Four provenance groups are defined using QFL, QmKP, LmLvLs, and LvfLvmiLvl ternary plots of site means: (1) intraoceanic arc and remnant arc, (2) continental arc, (3) triple junction, and (4) strike-slip-continental arc. Intraoceanic- and remnant-arc sands are poor in quartz (mean QFL%Q < 5) and rich in lithics (QFL%L > 75); they are predominantly composed of plagioclase feldspar and volcanic lithic fragments. Continental-arc sand can be more quartzofeldspathic than the intraoceanic- and remnant-arc sand (mean QFL%Q values as much as 10, mean QFL%F values as much as 65, and mean QmKP%Qm as much as 20) and has more variable lithic populations, with minor metamorphic and sedimentary components. The triple-junction and strike-slip-continental groups compositionally overlap; both are more quartzofeldspathic than the other groups and show highly variable lithic proportions, but the strike-slip-continental group is more quartzose. Modal compositions of the triple junction group roughly correlate with the QFL transitional-arc field of Dickinson and others (1983), whereas the strike-slip-continental group approximately correlates with their dissected-arc field.
Resumo:
One hundred and twenty point counts of Oligocene to Recent sands and sandstones from DSDP sites in the Japan and Mariana intraoceanic forearc and backarc basins demonstrate that there is a clear compositional difference between the continentally influenced Japan forearc and backarc sediments, and the totally oceanic Mariana forearc and backarc sediments. Japan forearc sediments average 10 QFL%Q, 0.82 P/F, 2 Framework%Mica, 74 LmLvLst%Lv, and 19 LmLvLst%Lst. In contrast, the Mariana forearc and backarc sediments average 0 QFL%Q, 1.00 P/F, 0 Framework%Mica, 98 LmLvLst%Lv, and 1 LmLvLst%Lst. Sediment compositions in the Japan region are variable. The Honshu forearc sediments average 5 QFL%Q, 0.94 P/F, 1 Framework%Mica, 82 LmLvLst%Lv, and 15 LmLvLst%Lst. The Yamato Basin sediments (DSDP Site 299) average 13 QFL%Q, 0.70 P/F, 3 Framework%Mica, 78 LmLvLst%Lv, and 14 LmLvLst%Lst. The Japan Basin sediments (DSDP Site 301) average 24 QFL%Q, 0.54 P/F, 9 Framework%Mica, 58 LmLvLst%Lv, and 21 LmLvLst%Lst. P/F and Framework%Mica are higher in the Yamato Basin sediments than in the forearc sediments due to an increase in modal potassium content of volcanic rocks from east to west, on the island of Honshu. Site 301 possesses a higher QFL%Q and LmLvLst%Lst, and lower LmLvLst%Lv than Site 299 because it receives sediment from the Asian mainland as well as the island of Honshu. DSDP Site 293 sediments, in the Mariana region, average 0.97 P/F, 1 Framework%Mica, 13 LmLvLst%Lm and 83 LmLvLst%Lv, due to their proximity to the island of Luzon. The remaining Mariana forearc and backarc sediments show a uniform composition.
Resumo:
Miocene paleoceanographic evolution exhibits major changes resulting from the opening and closing of passages, the subsequent changes in oceanic circulation, and development of major Antarctic glaciation. The consequences and timing of these events can be observed in variations in the distribution of deep-sea hiatuses, sedimentation patterns, and biogeographic distribution of planktic organisms. The opening of the Drake Passage in the latest Oligocene to early Miocene (25-20 Ma) resulted in the establishment of the deep circumpolar current, which led to thermal isolation of Antarctica and increased global cooling. This development was associated with a major turnover in planktic organisms, resulting in the evolution of Neogene assemblages and the eventual extinction of Paleogene assemblages. The erosive patterns of two widespread hiatuses (PH, 23.0-22.5 Ma; and NH 1, 20-18 Ma) indicate that a deep circumequatorial circulation existed at this time, characterized by a broad band of carbonate-ooze deposition. Siliceous sedimentation was restricted to the North Atlantic and a narrow band around Antarctica. A major reorganization in deep-sea sedimentation and hiatus distribution patterns occurred near the early/middle Miocene boundary, apparently resulting from changes in oceanic circulation. Beginning at this time, deep-sea erosion occurred throughout the Caribbean (hiatus NH 2, 16-15 Ma), suggesting disruption of the deep circumequatorial circulation and northward deflection of deep currents, and/or intensification of the Gulf Stream. Sediment distribution patterns changed dramatically with the sudden appearance of siliceous-ooze deposition in the marginal and east equatorial North Pacific by 16.0 to 15.5 Ma, coincident with the decline of siliceous sedimentation in the North Atlantic. This silica switch may have been caused by the introduction of Norwegian Overflow Water into the North Atlantic acting as a barrier to outcropping of silica-rich Antarctic Bottom Water. The main aspects of the present oceanic circulation system and sediment distribution pattern were established by 13.5 to 12.5 Ma (hiatus NH 3), coincident with the establishment of a major East Antarctic ice cap. Antarctic glaciation resulted in a broadening belt of siliceous-ooze deposition around Antarctica, increased siliceous sedimentation in the marginal and east equatorial North Pacific and Indian Oceans, and further northward restriction of siliceous sediments in the North Atlantic. Periodic cool climatic events were accompanied by lower eustatic sea levels and widespread deep-sea erosion at 12 to 11 Ma (NH 4), 10 to 9 Ma (NH 5), 7.5 to 6.2 Ma (NH 6), and 5.2 to 4.7 Ma (NH 7).
Resumo:
The study of the main characteristics of ash layers in Leg 57 cores shows that they are suitable for an analysis of the effect on eruptive activity of their distribution. We found (1) sediment recovery good and ash layers numerous; (2) sedimentary environment generally free from terrigenous clastic material; (3) reworking limited; (4) volcanic glass very acidic, ranging from rhyolitic to rhyodacitic composition; and (5) alteration and diagenesis negligible above the lower Miocene. The curves of explosive volcanic activity in Holes 438, 439, and 440 display two stages of high activity: an early one around 16 m.y. and a late one starting 5 m.y. B.P., both stages being separated by an upper Miocene quiescence. Detail in these results is limited by the chemical composition of the glass and accounts only for trends in explosive acid volcanism. Nevertheless, results are roughly in agreement with other data from the Northwest Pacific, although some discrepancies in the correlation of intensity of the episodes occur. The data from Leg 57 support the hypothesis of synchronous pulses in explosive volcanism.
Resumo:
Volcanogenic sediments were obtained from Site 584, located on the midslope of the Japan Trench. Occurrences of volcanic ash in the diatomaceous mudstones increase within sediments dated 6-3 Ma. The frequency pattern and the sediment accumulation rate obtained at Site 584 are similar to those of Site 440 and to those of Sites 438 and 439, located on the upper slope basin. Explosive volcanism increased during the Pliocene and late Miocene in relation to the intrusion of Tertiary granites and uplift of the Tohoku Arc (northeastern Japan Arc). Hygromagmaphile element concentration shows that the glass does not belong to a unique series, and a comparison with Nankai Trough data distinguishes at least two different evolutionary lines.
Resumo:
In Bermingham v Priest [2002] QSC 057 jones J considered the position of persons seeking to claim damages where the Motor Accident Insurance Act 1994 applies prior to its amendment by the Motor Accident Insurance Amendment Act 2000, and where proceedings are brought close to expiration of the statutory limitation period.