985 resultados para 532 nm green laser
Resumo:
We report laser-generated plasmas in atmosphere with electrical spark generated by a synchronization circuit. The breakdown thresholds under the conditions that the electrical spark is used and not used are compared. The breakdown threshold has a distinct decrease after the electrical spark is used. Breakdown thresholds as a function of atmosphere pressure have also been measured at laser wavelengths 532 nm and 1064 rim for the laser pulse width of 15ns. We also discuss the principle and performances of the ionized atmosphere by Nd:YAG laser under the condition of electrical spark introduction. Multiphoton ionization and cascade ionization play important roles in the whole process of atmosphere ionization. The free electron induced by electrical spark can supply the initialization free electron number for multiphoton ionization and cascade ionization. A model for breakdown in atmosphere, which is in good agreement with the experimental results, is described.
Resumo:
In this paper high-order harmonic generation (HHG) spectra and the ionization probabilities of various charge states of small cluster Na-2 in the multiphoton regimes are calculated by using time-dependent local density approximation (TDLDA) for one-colour (1064 nm) and two-colour (1064 nm and 532 nm) ultrashort (25 fs) laser pulses. HHG spectra of Na2 have not the large extent of plateaus due to pronounced collective effects of electron dynamics. In addition, the two-colour laser field can result in the breaking of the symmetry and generation of the even order harmonic such as the second order harmonic. The results of ionization probabilities show that a two-colour laser field can increase the ionization probability of higher charge state.
Resumo:
Laser-induced breakdown plasma is produced by using Q-switched Nd: YAG laser operating at 532 nm, which interacts with the Al alloy sample target in air. The spectral lines in the 230-440 nm wavelength range have been identified, and based on the calibration-free method, the mass concentration of Al alloy are obtained, which is in good agreement with the standard value of the sample.
Resumo:
Using Nd: YAG laser (532 nm) pumped mixed-dye laser. we obtained the output of this dye enhanced at the wavelength interval equivalent to that given by the copper vapor laser pumped dye laser. This measure favored is with the measurement of single-color three-photon resonant ionization spectrum of atomic uranium in the range of 562-586 nm,which is otherwise not efficiently covered by Nd: YAG laser pumped dye laser with any single dye. Thus 140 U I energy levels were obtained and the peaks of interest 575.814 nm and 575.836 rim were well resolved and their relative intensity determined.
Resumo:
The photoionization of methyl iodide beam seeded in argon and helium is studied by time-of-flight mass spectrometry using a 25 ns, 532 nm Nd-YAG laser with intensities in the range of 2 x 10(10)-2 x 10(11) W/cm(2). Multiply charged ions Of Iq+ (q = 2-3) and C2+ with tens of eV kinetic energies have been observed when laser interacts with the middle part of the pulsed molecular beam, whose peak profiles are independent on the laser polarization directions. Strong evidences show that these ions are coming from the Coulomb explosion of multiply charged CH3I clusters, and laser induced inverse bremsstrahlung absorption of caged electrons plays a key role in the formation of multiply charged ions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Multicharged xenon and krypton ions with charge states up to Xe11+ and Kr11+ have been observed in laser ionization of a pulsed xenon or krypton beam by a 25 ns Nd-YAG laser with laser intensity of 10(10)-10(11) W cm(-2) at 532 nm. There is strong evidence to support that those multicharged ions come from cluster-assisted electron recolliding ionizations inside the cluster after multiphoton ionization of atoms in the cluster, the electron can gain its kinetic energy by inverse bremsstrahlung absorption from a laser field quickly.
Resumo:
Raman satellites have been observed in the scattering of a Nd:YAG laser (532 nm) from a laser-ablated Mg plasma plume. We identify them as originating from transitions between the fine-structure components of the metastable 3s3p P-3(0,1,2) level of Mg. We have calculated the cross sections for Raman and Rayleigh scattering from the metastable state. Comparison of the expected ratio of the satellites to the Rayleigh peak indicates the changing population fraction of the metastable states in the plume.
Resumo:
In this study, ion acceleration from thin planar target foils irradiated by ultrahigh-contrast (10(10)), ultrashort (50 fs) laser pulses focused to intensities of 7 x 10(20) W cm(-2) is investigated experimentally. Target normal sheath acceleration (TNSA) is found to be the dominant ion acceleration mechanism when the target thickness is >= 50 nm and laser pulses are linearly polarized. Under these conditions, irradiation at normal incidence is found to produce higher energy ions than oblique incidence at 35 degrees with respect to the target normal. Simulations using one-dimensional (1D) boosted and 2D particle-in-cell codes support the result, showing increased energy coupling efficiency to fast electrons for normal incidence. The effects of target composition and thickness on the acceleration of carbon ions are reported and compared to calculations using analytical models of ion acceleration.
Resumo:
Optical Thomson scattering has been implemented as a diagnostic of laser ablated plumes generated with second harmonic Nd:YAG laser radiation at 532 nm. Thomson scattering data with both spatial and temporal resolution has been collected, giving both electron density, and temperature distributions within the plume as a function of time. Although the spatial profiles do not match very well for simple models assuming either isothermal or isentropic expansion, consideration of the measured ablated mass indicates an isothermal expansion fits better than an isentropic expansion and indeed, at late time, the spatial profile of temperature is almost consistent with an isothermal approximation.
Resumo:
We have used optical Rayleigh and Thomson scattering to investigate the expansion dynamics of laser induced plasma in atmospheric helium and to map its electron parameters both in time and space. The plasma is created using 9 ns duration, 140 mJ pulses from a Nd:YAG laser operating at 1064 nm, focused with a 10 cm focal length lens, and probed with 7 ns, 80 mJ, and 532 nm Nd:YAG laser pulses. Between 0.4 μs and 22.5 μs after breakdown, the electron density decreases from 3.3 × 1017 cm−3 to 9 × 1013 cm−3, while the temperature drops from 3.2 eV to 0.1 eV. Spatially resolved Thomson scattering data recorded up to 17.5 μs reveal that during this time the laser induced plasma expands at a rate given by R ∼ t0.4 consistent with a non-radiative spherical blast wave. This data also indicate the development of a toroidal structure in the lateral profile of both electron temperature and density. Rayleigh scattering data show that the gas density decreases in the center of the expanding plasma with a central scattering peak reemerging after about 12 μs. We have utilized a zero dimensional kinetic global model to identify the dominant particle species versus delay time and this indicates that metastable helium and the He2 + molecular ion play an important role.
Resumo:
Spatially and temporally varying neutral, ion and electron number densities have been mapped out within laser ablated plasma plumes expanding into vacuum. Ablation of a magnesium target was performed using a KrF laser, 30 ns pulse duration and 248 nm wavelength. During the initial stage of plasma expansion (t <EQ 100 ns) interferometry has been used to obtain line averaged electron number densities, for laser power densities on target in the range 1.3 - 3.0 X 108 W/cm2. Later in the plasma expansion (t equals 1 microsecond(s) ) simultaneous absorption and laser induced fluorescence spectroscopy has been used to determine 3D neutral and ion number densities, for a power density equal to 6.7 X 107 W/cm2. Two distinct regions within the plume were identified. One is a fast component (approximately 106 cm-1) consisting of ions and neutrals with maximum number densities observed to be approximately 30 and 4 X 1012 cm-3 respectively, and the second consists of slow moving neutral material at a number density of up to 1015 cm-3. Additionally a Langmuir probe has been used to obtain ion and electron number densities at very late times in the plasma expansion (1 microsecond(s) <EQ t <EQ 15 microsecond(s) ). A copper target was ablated using a Nd:YAG laser, 7.5 ns duration and 532 nm (2 (omega) ) wavelength, with a power density on target equal to 6 X 108 W/cm2. Two regions within the plume with different velocities were observed. Within a fast component (approximately 3 X 106 cms-1) electron and ion number densities of the order 5 X 1012 cm-3 were observed and within the second slower component (approximately 106 cms-1) electron and ion number densities of the order 1 - 2 X 1013 cm-3 were determined.
Resumo:
In this article, we present the spectral and nonlinear optical properties of ZnO–CdS nanocomposites prepared by colloidal chemical synthesis. The optical band gap (Eg) of the material is tunable between 2.62 and 3.84 eV. The emission peaks of ZnO–CdS nanocomposites change from 385 to 520 nm almost in proportion to changes in Eg. It is possible to obtain a desired luminescence color from UV to green by simply adjusting the composition. The nonlinear optical response of these samples is studied by using nanosecond laser pulses from a tunable laser at the excitonic resonance and off-resonance wavelengths. The nonlinear response is wavelength dependent, and switching from saturable absorption (SA) to reverse SA (RSA) has been observed for samples as the excitation wavelength changes from the excitonic resonance to off-resonance wavelengths. Such a changeover in the sign of the nonlinearity of ZnO–CdS nanocomposites is related to the interplay of exciton bleach and optical limiting mechanisms. The ZnO–CdS nanocomposites show self-defocusing nonlinearity and good nonlinear absorption behavior at off-resonant wavelengths. The nonlinear refractive index and the nonlinear absorption increase with increasing CdS volume fraction at 532 nm. The observed nonlinear absorption is attributed to two photon absorption followed by weak free carrier absorption. The enhancement of the third-order nonlinearity in the composites can be attributed to the concentration of exciton oscillator strength. This study is important in identifying the spectral range and composition over which the nonlinear material acts as a RSA based optical limiter. ZnO–CdS is a potential nanocomposite material for the tunable light emission and for the development of nonlinear optical devices with a relatively small limiting threshold.
Resumo:
This study was conducted to identify the concentration dependence of the operating wavelengths and the relative intensities in which a dye mixture doped polymer optical fibre can operate. A comparative study of the radiative and Forster type energy transfer processes in Coumarin 540:Rhodamine 6G, Coumarin 540:Rhodamine B and Rhodamine 6G:Rhodamine B in methyl methacrylate (MMA) and poly(methyl methacrylate) (PMMA) was done by fabricating a series of dye mixture doped polymer rods which have two emission peaks with varying relative intensities. These rods can be used as preforms for the fabrication of polymer optical fibre amplifiers operating in the multi-wavelength regime. The 445 nm line from an Nd:YAG pumped optical parametric oscillator (OPO) was used as the excitation source for the first two dye pairs and a frequency doubled Nd:YAG laser emitting at 532 nm was used to excite the Rh 6G:Rh B pair. The fluorescence lifetimes of the donor molecule in pure form as well as in the mixtures were experimentally measured in both monomer and polymer matrices by time-correlated single photon counting technique. The energy transfer rate constants and transfer efficiencies were calculated and their dependence on the acceptor concentration was analysed. It was found that radiative energy transfer mechanisms are more efficient in all the three dye pairs in liquid and solid matrices.