961 resultados para 5-LIPOXYGENASE ACTIVATION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The MAC16 tumour produces a factor which exhibits lipid-mobilizing activity in vitro in addition to causing extensive depletion of host lipid stores. The mechanism of the anti-lipolytic effect of two anti-cachectic agents, eicosapentaenoic acid, an ω-3 polyunsaturated fatty acid (PUFA), and N-(3-phenoxycinnamyl)acetohydroxamic acid (BW A4C), a 5-lipoxygenase inhibitor, has been investigated. These two agents reduce tumour growth and reverse the weight loss which accompanies transplantation of the MAC16 murine colon adenocarcinoma into NMRI mice. Mice transplanted with the MAC16 tumour exhibited weight loss which was directly proportional to the serum lipolytic activity measured in vitro up to a weight loss corresponding to 16% of the original body weight. After this time, an inverse relationship between weight loss and lipolytic activity was observed. Body composition analysis revealed a large decrease in body fat relative to other body compartments. The anti-tumour/anti-cachectic effect of EPA did not appear to be due to its ability to inhibit the production of prostaglandin E2. The MAC16 lipolytic factor increased adenylate cyclase activity in adipocyte plasma membranes in a concentration-dependent manner. EPA inhibited the production of cAMP attributed to this lipid-mobilizing factor. EPA produced alterations in Gi , the guanine nucleotide binding protein which mediates hormonal inhibition of adenylate cyclase, in addition to altering cAMP production in adipocyte plasma membranes in response to hormonal stimulation. The alterations in adenylate cyclase activity were complex and not specific to EPA. EPA stimulated adenylate cyclase activity when in a relatively high fatty acid : membrane ratio and inhibited activity when this ratio was lowered. The inhibitory effect of EPA on adenylate cyclase activity may be the underlying mechanism which explains its anti-lipolytic and anti-cachectic effect. The inability of the related ω-3 PUFA, docosahexaenoic acid (DHA), to inhibit cachexia may be due to a difference in the metabolic fates of these two fatty acids. BW A4C inhibited lipolysis in isolated adipocytes which suggests that this compound may possess the potential for an anti-cachectic effect which is independent of its inhibitory effect on tumour growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Previously we demonstrated that heparin administration during carotid endarterectomy (CEA) caused a marked, but transient increase in platelet aggregation to arachidonic acid (AA) and adenosine diphosphate (ADP), despite effective platelet cyclo-oxygenase-1 (COX-1) inhibition with aspirin. Here we investigated the metabolism of AA via platelet 12-lipoxygenase (12-LOX) as a possible mediator of the observed transient aspirin resistance, and compared the effects of unfractionated (UFH) and low-molecular-weight (LMWH) heparin. A total of 43 aspirinated patients undergoing CEA were randomised in the trial to 5,000 IU UFH (n=22) or 2,500 IU LMWH (dalteparin, n=21). Platelet aggregation to AA (4x10⁻³) and ADP (3x10⁻⁶) was determined, and the products of the COX-1 and 12-LOX pathways; thromboxane B₂ (TXB₂) and 12-hydroxyeicosatretraenoic acid (12-HETE) were measured in plasma, and in material released from aggregating platelets.Aggregation to AA increased significantly (~10-fold) following heparinisation (p<0.0001), irrespective of heparin type (p=0.33). Significant, but smaller (~2-fold) increases in aggregation to ADP were also seen, which were significantly lower in the platelets of patients randomised to LMWH (p<0.0001). Plasma levels of TxB2 did not rise following heparinisation (p=0.93), but 12-HETE increased significantly in the patients' plasma, and released from platelets stimulated in vitro withADP, with both heparin types (p<0.0001). The magnitude of aggregation to ADP correlated with 12-HETE generation (p=0.03). Heparin administration during CEA generates AA that is metabolised to 12-HETE via the 12-LOX pathway, possibly explaining the phenomenon of transient heparin-induced platelet activation. LMWH has less effect on aggregation and 12-HETE generation than UFH when the platelets are stimulated with ADP.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

12/15-Lipoxygenase (LOX) activity is elevated in vascular diseases associated with impaired nitric oxide (⋅NO) bioactivity, such as hypertension and atherosclerosis. In this study, primary porcine monocytes expressing 12/15-LOX, rat A10 smooth muscle cells transfected with murine 12/15-LOX, and purified porcine 12/15-LOX all consumed ⋅NO in the presence of lipid substrate. Suppression of LOX diene conjugation by ⋅NO was also found, although the lipid product profile was unchanged. ⋅NO consumption by porcine monocytes was inhibited by the LOX inhibitor, eicosatetraynoic acid. Rates of arachidonate (AA)- or linoleate (LA)-dependent ⋅NO depletion by porcine monocytes (2.68 ± 0.03 nmol ⋅ min−1 ⋅ 106 cells−1 and 1.5 ± 0.25 nmol ⋅ min−1 ⋅ 106 cells−1, respectively) were several-fold greater than rates of ⋅NO generation by cytokine-activated macrophages (0.1–0.2 nmol ⋅ min−1 ⋅ 106 cells−1) and LA-dependent ⋅NO consumption by primary porcine monocytes inhibited ⋅NO activation of soluble guanylate cyclase. These data indicate that catalytic ⋅NO consumption by 12/15-LOX modulates monocyte ⋅NO signaling and suggest that LOXs may contribute to vascular dysfunction not only by the bioactivity of their lipid products, but also by serving as catalytic sinks for ⋅NO in the vasculature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rationale Serotonin in the dorsal periaqueductal gray (DPAG) through the activation of 5-HT(1A) and 5-HT(2A) receptors inhibits escape, a defensive behavior associated with panic attacks. Long-term treatment with antipanic drugs that nonselectively or selectively blocks the reuptake of serotonin (e.g., imipramine and fluoxetine, respectively) enhances the inhibitory effect on escape caused by intra-DPAG injection of 5-HT(1A) and 5-HT(2A) receptor agonists. It has been proposed that these compounds exert their effect on panic by facilitating 5-HT-mediated neurotransmission in the DPAG. Objectives The objective of this study was to investigate whether facilitation of 5-HT neurotransmission in the DPAG is also observed after treatment with alprazolam, a pharmacologically distinct antipanic drug that acts primarily as a high potency benzodiazepine receptor agonist. Materials and methods Male Wistar rats, subchronically (3-6 days) or chronically (14-17 days) treated with alprazolam (2 and 4 mg/kg, i.p.) were intra-DPAG injected with (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT), (+/-)-1-(2,5-dimethoxy-4-iodophenyl) piperazine dihydrochloride (DOI), and midazolam, respectively, 5-HT(1A), 5-HT(2A/2C), and benzodiazepine receptor agonists. The intensity of electrical current that needed to be applied to the DPAG to evoke escape behavior was measured before and after the microinjection of these agonists. Results Intra-DPAG injection of the 5-HT agonists and midazolam increased the escape threshold in all groups of animals tested, indicating a panicolytic-like effect. The inhibitory effect of 8-OH-DPAT and DOI, but not midazolam, was significantly higher in animals receiving long-, but not short-term treatment with alprazolam. Conclusions Alprazolam as antidepressants compounds facilitates 5-HT(1A)- and 5-HT(2A)-receptor-mediated neurotransmission in the DPAG, implicating this effect in the mode of action of different classes of antipanic drugs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The high affinity receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF) consists of a cytokine-specific alpha-subunit (hGMR alpha) and a common signal-transducing beta-subunit (hpc) that is shared with the interleukin-3 and -5 receptors, We have previously identified a constitutively active extracellular point mutant of hpc, I374N, that can confer factor independence on murine FDC-P1 cells but not BAF-B03 or CTLL-2 cells (Jenkins, B. J., D'Andrea, R. J., and Gonda, T. J. (1995) EMBO J. 14, 4276-4287), This restricted activity suggested the involvement of cell type-specific signaling molecules in the activation of this mutant. We report here that one such molecule is the mouse GMR alpha (mGMR alpha) subunit, since introduction of mGMR alpha, but not hGMR alpha, into BAF-B03 or CTLL-2 cells expressing the I374N mutant conferred factor independence, Experiments utilizing mouse/human chimeric GMR alpha subunits indicated that the species specificity lies in the extracellular domain of GMRa. Importantly, the requirement for mGMR alpha correlated with the ability of I374N (but not wild-type hpc) to constitutively associate with mGMRa. Expression of I374N in human factor-dependent UT7 cells also led to factor-independent proliferation, with concomitant up-regulation of hGMR alpha surface expression. Taken together, these findings suggest a critical role for association with GMR alpha in the constitutive activity of I374N.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Granulocyte-macrophage colony stimulating factor (GM-CSF), Interleukin-3 (IL-3) and Interleukin-5 (IL-5) have overlapping, pleiotropic effects on hematopoietic cells, including neutrophils, eosinophils, monocytes and early progenitor cells. The high-affinity receptors for human GM-CSF, IL-3, and IL-5 share a common beta-subunit (h beta(c)), which is essential for signalling and plays a major role in recruiting intracellular signalling molecules. While activation of the cytoplasmic tyrosine kinase JAK2 appears to be the initiating event for signalling, the immediate events that trigger this are still unclear. We have isolated a number of activated mutants of h beta(c), which can be grouped into classes defined by their state of receptor phosphorylation, their requirement for alpha subunit as a cofactor, and their activities in primary cells and cell lines. We discuss these findings with regard to the stoichiometry, activation, and signalling of the normal GM-CSF/IL-3/IL-5 receptor complexes. Specifically, this work has implications for the role of the ligand-specific alpha-subunits in initiating the signalling through the beta-subunit, the role of beta subunit dimerization as a receptor trigger, and the function of receptor tyrosine phosphorylation in generating growth and survival signals. Based on the properties of the activated mutants and the recent structures of erythropoietin receptor (Epo-R) complexes, we propose a model in which (1) activation of h beta(c) can occur via alternative states that differ with respect to stoichiometry and subunit assembly, but which all mediate proliferative responses, and (2) each of the different classes of activated mutants mimics one of these alternative states. (C) 2000 International Society for Experimental Hematology. Published by Elsevier Science Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) is one of several mutagenic and carcinogenic heterocyclic amines formed during the cooking process of protein-rich foods, These compounds are highly mutagenic and have been shown to produce tumours in various tissues in rodents and non-human primates. Metabolic activation of IQ is a two-step process involving N-hydroxylation by CYP1A2 followed by esterification to a more reactive species capable of forming adducts with DNA, To date, acetylation and sulphation have been proposed as important pathways in the formation of N-hydroxy esters, In this study we have demonstrated the presence of an ATP-dependent activation pathway for N-hydroxy-IQ (N-OH-IQ) leading to DNA adduct formation measured by covalent binding of [H-3]N-OH-IQ to DNA, ATP-dependent DNA binding of N-OH-IQ was greatest in the cytosolic fraction of rat liver, although significant activity was also seen in colon, pancreas and lung. ATP was able to activate N-OH-IQ almost 10 times faster than N-hydroxy-2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (7.7 +/- 0.3 and 0.9 +/- 0.1 pmol/mg protein/min, respectively). Using reported intracellular concentrations of cofactor, the ability of ATP to support DNA binding was similar to that seen with 3'-phosphoadenosine 5'-phosphosulphate and similar to 50% of that seen with acetyl coenzyme A (AcCoA), In addition to DNA binding, HPLC analysis of the reaction mixtures using ATP as co-factor showed the presence of two stable, polar metabolites, With AcCoA, only one metabolite was seen. The kinase inhibitors genistein, tyrphostin A25 and rottlerin significantly inhibited both DNA binding and metabolite formation with ATP. However, inhibition was unlikely to be due to effects on enzyme activity since the broad spectrum kinase inhibitor staurosporine had no effect and the inactive analogue of genistein, daidzein, was as potent as genistein, The effects of genistein and daidzein, which are naturally occurring isoflavones from soy and other food products, on DNA adduct formation may potentially be useful in the prevention of heterocyclic amine-induced carcinogenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tonic immobility (TI) is a temporary state of profound motor inhibition induced by situations that generate intense fear, with the objective of protecting an animal from attacks by predators. A preliminary study by our group demonstrated that microinjection into the basolateral nucleus of the amygdala (BLA) of an agonist to 5-HT(1A) and 5-HT(2) receptors promoted a decrease in TI duration. In the current study, the effects of GABAergic stimulation of the BLA and the possible interaction between GABA(A) and 5-HT(2) receptors on TI modulation were investigated. Observation revealed that GABAergic agonist muscimol (0.26 nmol) reduced the duration of TI episodes, while microinjection of the GABAergic antagonist bicuculline (1 nmol) increased TI duration. Additionally, microinjection of 5-HT(2) agonist receptors (alpha-methyl-5-HT, 0.32 nmol) into the BLA decreased TI duration, an effect reversed by pretreatment with bicuculline (at the dose that had no effect per se, 0.2 nmol). Moreover, the activation of GABA(A) and 5-HT(2) receptors in the BLA did not alter the spontaneous motor activity in the open field test. These experiments demonstrated that the activation of GABA(A) and 5-HT(2) receptors of the BLA possibly produce a reduction in unconditioned fear that decreases the TI duration in guinea pigs, but this is not due to increased spontaneous motor activity, which could affect a TI episode nonspecifically. Furthermore, these results suggest an interaction between GABAergic and serotoninergic mechanisms mediated by GABA(A) and 5-HT(2) receptors. In addition, the GABAergic circuit of the BLA presents a tonic inhibitory influence on TI duration. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Macrophage migration-inhibitory factor (MIF) has recently been identified as a pituitary hormone that functions as a counterregulatory modulator of glucocorticoid action within the immune system. In the anterior pituitary gland, MIF is expressed in TSH- and ACTH-producing cells, and its secretion is induced by CRF. To investigate MIF function and regulation within pituitary cells, we initiated the characterization of the MIF 5'-regulatory region of the gene. The -1033 to +63 bp of the murine MIF promoter was cloned 5' to a luciferase reporter gene and transiently transfected into freshly isolated rat anterior pituitary cells. This construct drove high basal transcriptional activity that was further enhanced after stimulation with CRF or with an activator of adenylate cyclase. These transcriptional effects were associated with a concomitant rise in ACTH secretion in the transfected cells and by an increase in MIF gene expression as assessed by Northern blot analysis. A cAMP-responsive element (CRE) was identified within the MIF promoter region which, once mutated, abolished the cAMP responsiveness of the gene. Using this newly identified CRE, DNA-binding activity was detected by gel retardation assay in nuclear extracts prepared from isolated anterior pituitary cells and AtT-20 corticotrope tumor cells. Supershift experiments using antibodies against the CRE-binding protein CREB, together with competition assays and the use of recombinant CREB, allowed the detection of CREB-binding activity with the identified MIF CRE. These data demonstrate that CREB is the mediator of the CRF-induced MIF gene transcription in pituitary cells through an identified CRE in the proximal region of the MIF promoter.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Insulin resistance in obesity is partly due to diminished glucose transport in myocytes and adipocytes, but underlying mechanisms are uncertain. Insulin-stimulated glucose transport requires activation of phosphatidylinositol (PI) 3-kinase (3K), operating downstream of insulin receptor substrate-1. PI3K stimulates glucose transport through increases in PI-3,4,5-(PO(4))(3) (PIP(3)), which activates atypical protein kinase C (aPKC) and protein kinase B (PKB/Akt). However, previous studies suggest that activation of aPKC, but not PKB, is impaired in intact muscles and cultured myocytes of obese subjects. Presently, we examined insulin activation of glucose transport and signaling factors in cultured adipocytes derived from preadipocytes harvested during elective liposuction in lean and obese women. Relative to adipocytes of lean women, insulin-stimulated [(3)H]2-deoxyglucose uptake and activation of insulin receptor substrate-1/PI3K and aPKCs, but not PKB, were diminished in adipocytes of obese women. Additionally, the direct activation of aPKCs by PIP(3) in vitro was diminished in aPKCs isolated from adipocytes of obese women. Similar impairment in aPKC activation by PIP(3) was observed in cultured myocytes of obese glucose-intolerant subjects. These findings suggest the presence of defects in PI3K and aPKC activation that persist in cultured cells and limit insulin-stimulated glucose transport in adipocytes and myocytes of obese subjects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Activation of 5-hydroxytryptamine (5-HT) 5-HT1A, 5-HT2C, 5-HT3, and 5-HT7 receptors modulates the excitability of cardiac vagal motoneurones, but the precise role of 5-HT2A/2B receptors in these phenomena is unclear. We report here the effects of intracisternal (ic) administration of selective 5-HT2A/2B antagonists on the vagal bradycardia elicited by activation of the von Bezold-Jarisch reflex with phenylbiguanide. The experiments were performed on urethane-anesthetized male Wistar rats (250-270 g, N = 7-9 per group). The animals were placed in a stereotaxic frame and their atlanto-occipital membrane was exposed to allow ic injections. The rats received atenolol (1 mg/kg, iv) to block the sympathetic component of the reflex bradycardia; 20-min later, the cardiopulmonary reflex was induced with phenylbiguanide (15 µg/kg, iv) injected at 15-min intervals until 3 similar bradycardias were obtained. Ten minutes after the last pre-drug bradycardia, R-96544 (a 5-HT2A antagonist; 0.1 µmol/kg), SB-204741 (a 5-HT2B antagonist; 0.1 µmol/kg) or vehicle was injected ic. The subsequent iv injections of phenylbiguanide were administered 5, 20, 35, and 50 min after the ic injection. The selective 5-HT2A receptor antagonism attenuated the vagal bradycardia and hypotension, with maximal effect at 35 min after the antagonist (pre-drug = -200 ± 11 bpm and -42 ± 3 mmHg; at 35 min = -84 ± 10 bpm and -33 ± 2 mmHg; P < 0.05). Neither the 5-HT2B receptor antagonists nor the vehicle changed the reflex. These data suggest that central 5-HT2A receptors modulate the central pathways of the parasympathetic component of the von Bezold-Jarisch reflex.