380 resultados para 40Ar
Resumo:
Three selected diamictite samples recovered within sequence group S3 at Sites 1097 (Sample 178-1097A-27R-1, 35-58 cm) and 1103 (Samples 178-1103A-31R-2, 0-4 cm, and 36R-3, 4-8 cm) of Ocean Drilling Program Leg 178 have been investigated by scanning electron microscope, electron microprobe, and 40Ar-39Ar laser-heating techniques. They contain variable proportions of fragments of volcanic rock groundmass (mostly in the range of 100-150 µm) with textures ranging from microcrystalline to ipocrystalline. Their rounded shapes indicate mechanical reworking. Fresh groundmass glasses, recognized only in grains from samples of Site 1103, show mainly a subalkaline affinity on the basis of total alkali-silica variations. However, they are characterized by relatively high TiO2 and P2O5 contents (1.4-2.8 and 0.1-0.9 wt%, respectively). Because of the small size of homogeneous grains (100-150 µm), they were not suitable for single-grain total fusion 40Ar-39Ar analyses. The incremental laser-heating technique was applied to milligram-sized samples (only for Samples 178-1097A-27R-1, 35-58 cm, and 178-1103A-36R-3, 4-8 cm) and to various small fractions (each consisting of 10 grains for the sample from Site 1097 and 30 grains for samples from Site 1103). The latter approach resulted in more effective resolution of sample heterogeneity. Argon ages from the small fractions show significantly different ranges in the three samples: 75-173 Ma for Sample 178-1097A-27R-1, 35-58 cm, 18-57 Ma for Sample 178-1103A-31R-2, 0-4 cm, and 7.6-50 Ma for Sample 178-1103A-36R-3, 4-8 cm. Ca/K ratios derived from argon isotopes at Site 1103 suggest that the data mainly refer to outgassing of groundmass glass. At Site 1103, we observe an overall apparent age increase with decreasing sample depth. This is compatible with glacial erosion that affected with time deeper levels of a volcanic sequence previously deposited on the continent. The youngest apparent age of 7.6 ± 0.7 Ma detected close to the bottom of Hole 1103A (340 meters below seafloor [mbsf]) is compatible with the age range of the diatom Actinocyclus ingens v. ovalis Zone (6.3-8.0 Ma) determined for the interval 320-355 mbsf and with the maximum ages derived from strontium isotope composition of barnacle fragments obtained at 262-263 mbsf at the same site. Nevertheless, this age cannot be taken as the maximum youngest age of the volcanic sequence sampled by glacial erosion or as the maximum age for the deposition of the Sequence S3 at 340 mbsf unless validated by further research.
Resumo:
Submarine basalts are difficult to date accurately by the potassium-argon method. Dalrymple and Moore (1968) and Dymond (1970), for example, showed that, when the conventional K-Ar method is used, pillow lavas may contain excess 40Ar. Use of the 40Ar/39Ar step-heating method has not overcome the problem, as had been hoped, and has produced some conflicting results. Ozima and Saito (1973) concluded that the excess 40Ar is retained only in high temperature sites, but Seidemann (1978) found that it could be released at all temperatures. Furthermore, addition of potassium, from seawater, to the rock after it has solidified can result in low ages (Seidemann, 1977), the opposite effect to that of excess 40Ar. Thus, apparent ages may be either greater or less than the age of extrusion. Because of this discouraging record, the present study was approached pragmatically, to investigate whether self-consistent results can be obtained by the 40Ar/39Ar step-heating method.
Resumo:
40Ar-39Ar dating of a high-MgO bronzite andesite from near the top of basement drilled at Site 458 shows the characteristic symptoms of artificially disturbed samples - i.e., an inverse staircase-type age spectrum, approximate linearity on an isochron plot, and concordance between total fusion age and isochron age. From conclusions based on other artificially disturbed samples (Ozima et al., 1979), we suggest that the reference isochron age (33.6 Ma) approximates the age of the sample. A basalt from deeper in Hole 458 gives an isochron age of 19.1 ± 0.2 Ma, which is slightly younger than the plateau age of 21.4 ± 1.0 Ma. Both ages are, however, considerably younger than the age of fossils in the overlying sediments (30 - 34 Ma). The age discrepancy may be explained if the 40Ar-39Ar age represents the age of secondary minerals, which formed later. No useful age data were obtained from a basalt sample recovered from Hole 459B.
Resumo:
Geochemical (atomic absorption, neutron activation analyses), mineralogical (microprobe), and radiometric (40K - 40Ar) data are presented for five basalts from the Guatemala Trench area (Deep Sea Drilling Project, Leg 84). Strong geochemical and mineralogical differences distinguish two types among these basalts: (1) One basalt (Sample 567A-19,CC), recovered below Upper Cretaceous limestone has the following characteristics: it is quartz normative and has low TiO2, content, as well as low amounts of Cr, Ni and other transition metals, an LREE depleted pattern, and affinities of clinopyroxene phenocryst plotted into the field of tholeiitic and calc-alkalic pyroxenes. (2) Four alkaline basalts, recovered from the mafic and ultramafic acoustic basement, are nepheline normative and show high TiO2 content, high amounts of Cr, Ni and so on, an LREE enriched pattern and compositions of clinopyroxene phenocryst plotted close to or within the field of alkali basalt pyroxenes. These basalts are comparable to those recognized in the lower part of the Santa Elena complex and are clearly different from the oceanic basalts of the Cocos Plate. The radiometric age of the orogenic basalt seems to be close to 80 Ma. The alkaline basalts are clearly older, even if a discrepancy appears between the results of different analyses because of the secondary effects of alteration.