997 resultados para 3d Phantom


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex relationship between the hydrodynamic environment and surrounding tissues directly impacts on the design and production of clinically useful grafts and implants. Tissue engineers have generally seen bioreactors as 'black boxes' within which tissue engineering constructs (TECs) are cultured. It is accepted that a more detailed description of fluid mechanics and nutrient transport within process equipment can be achieved by using computational fluid dynamics (CFD) technology. This review discusses applications of CFD for tissue engineering-related bioreactors -- fluid flow processes have direct implications on cellular responses such as attachment, migration and proliferation. We conclude that CFD should be seen as an invaluable tool for analyzing and visualizing the impact of fluidic forces and stresses on cells and TECs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Process modeling is a complex organizational task that requires many iterations and communication between the business analysts and the domain specialists involved in the process modeling. The challenge of process modeling is exacerbated, when the process of modeling has to be performed in a cross-organizational, distributed environment. Some systems have been developed to support collaborative process modeling, all of which use traditional 2D interfaces. We present an environment for collaborative process modeling, using 3D virtual environment technology. We make use of avatar instantiations of user ego centres, to allow for the spatial embodiment of the user with reference to the process model. We describe an innovative prototype collaborative process modeling approach, implemented as a modeling environment in Second Life. This approach leverages the use of virtual environments to provide user context for editing and collaborative exercises. We present a positive preliminary report on a case study, in which a test group modelled a business process using the system in Second Life.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: This paper details an in-vitro study using human adipose tissue-derived precursor/stem cells (ADSCs) in three-dimensional (3D) tissue culture systems. ADSCs from 3 donors were seeded onto NaOH-treated medical grade polycaprolactone-tricalcium phosphate (mPCL-TCP) scaffolds with two different matrix components; fibrin glue and lyophilized collagen. ADSCs within these scaffolds were then induced to differentiate along the osteogenic lineage for a 28-day period and various assays and imaging techniques were performed at Day 1, 7, 14, 21 and 28 to assess and compare the ADSC’s adhesion, viability, proliferation, metabolism and differentiation along the osteogenic lineage when cultured in the different scaffold/matrix systems. The ADSC cells were proliferative in both collagen and fibrin mPCL-TCP scaffold systems with a consistently higher cell number (by comparing DNA amounts) in the induced group over the non-induced groups for both scaffold systems. In response to osteogenic induction, these ADSCs expressed elevated osteocalcin, alkaline phosphatase and osteonectin levels. Cells were able to proliferate within the pores of the scaffolds and form dense cellular networks after 28 days of culture and induction. The successful cultivation of osteogenic by FDM process manufactured ADSCs within a 3D matrix comprising fibrin glue or collagen, immobilized within a robust synthetic scaffold is a promising technique which should enhance their potential usage in the regenerative medicine arena, such as bone tissue engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic Resonance Imaging (MRI) offers a valuable research tool for the assessment of 3D spinal deformity in AIS, however the horizontal patient position imposed by conventional scanners removes the axial compressive loading on the spine which is an important determinant of deformity shape and magnitude in standing scoliosis patients. The objective of this study was to design, construct and test an MRI compatible compression device for research into the effect of axial loading on spinal deformity using supine MRI scans. The compression device was designed and constructed, consisting of a vest worn by the patient, which was attached via straps to a pneumatically actuated footplate. An applied load of 0.5 x bodyweight was remotely controlled by a unit in the scanner operator’s console. The entire device was constructed using non-metallic components for MRI compatibility. The device was evaluated by performing unloaded and loaded supine MRI scans on a series of 10 AIS patients. The study concluded that an MRI compatible compression device had been successfully designed and constructed, providing a research tool for studies into the effect of axial loading on 3D spinal deformity in scoliosis. The 3D axially loaded MR imaging capability developed in this study will allow future research investigations of the effect of axial loading on spinal rotation, and for imaging the response of scoliotic spinal tissues to axial loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adolescent Idiopathic Scoliosis (AIS) has been associated with reduced pulmonary function believed to be due to a restriction of lung volume by the deformed thoracic cavity. A recent study by our group examined the changes in lung volume pre and post anterior thoracoscopic scoliosis correction using pulmonary function testing (1), however the anatomical changes in ribcage shape and left/right lung volume after thoracoscopic surgery which govern overall respiratory capacity are unknown. The aim of this study was to use 3D rendering from CT scan data to compare lung and ribcage anatomical changes from pre to two years post thoracoscopic anterior scoliosis correction. The study concluded that 3D volumetric reconstruction from CT scans is a powerful means of evaluating changes in pulmonary and thoracic anatomy following surgical AIS correction. Most likely, lung volume changes following thoracoscopic scoliosis correction are multifactorial and affected by changes in height (due to residual growth), ribcage shape, diaphragm positioning, Cobb angle correction in the thoracic spine. Further analysis of the 3D reconstructions will be performed to assess how each of these factors affect lung volume in this patient cohort.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Ovine models are widely used in orthopaedic research. To better understand the impact of orthopaedic procedures computer simulations are necessary. 3D finite element (FE) models of bones allow implant designs to be investigated mechanically, thereby reducing mechanical testing. Hypothesis We present the development and validation of an ovine tibia FE model for use in the analysis of tibia fracture fixation plates. Material & Methods Mechanical testing of the tibia consisted of an offset 3-pt bend test with three repetitions of loading to 350N and return to 50N. Tri-axial stacked strain gauges were applied to the anterior and posterior surfaces of the bone and two rigid bodies – consisting of eight infrared active markers, were attached to the ends of the tibia. Positional measurements were taken with a FARO arm 3D digitiser. The FE model was constructed with both geometry and material properties derived from CT images of the bone. The elasticity-density relationship used for material property determination was validated separately using mechanical testing. This model was then transformed to the same coordinate system as the in vitro mechanical test and loads applied. Results Comparison between the mechanical testing and the FE model showed good correlation in surface strains (difference: anterior 2.3%, posterior 3.2%). Discussion & Conclusion This method of model creation provides a simple method for generating subject specific FE models from CT scans. The use of the CT data set for both the geometry and the material properties ensures a more accurate representation of the specific bone. This is reflected in the similarity of the surface strain results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Lockyer Valley, southeast Queensland, hosts intensive irrigated agriculture using groundwater from over 5000 alluvial bores. A current project is considering introduction of PRW (purified recycled water) to augment groundwater supplies. To assess this, a valley-wide MODFLOW simulation model is being developed plus a new unsaturated zone flow model. To underpin these models and provide a realistic understanding of the aquifer framework a 3D visualisation model has been developed using Groundwater Visualisation System (GVS) software produced at QUT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic Resonance Imaging (MRI) offers a valuable research tool for the assessment of 3D spinal deformity in AIS, however the horizontal patient position imposed by conventional scanners removes the axial compressive loading on the spine. The objective of this study was to design, construct and test an MRI compatible compression device for research into the effect of axial loading on spinal deformity using supine MRI scans. The device was evaluated by performing unloaded and loaded supine MRI scans on a series of 10 AIS patients. The patient group had a mean initial (unloaded) major Cobb angle of 43±7º, which increased to 50±9º on application of the compressive load. The 7° increase in mean Cobb angle is consistent with that reported by a previous study comparing standing versus supine posture in scoliosis patients (Torell et al, 1985. Spine 10:425-7).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid prototyping (RP) techniques have been utilised by tissue engineers to produce three-dimensional (3D) porous scaffolds. RP technologies allow the design and fabrication of complex scaffold geometries with a fully interconnected pore network. Three-dimensional printing (3DP) technique was used to fabricate scaffolds with a novel micro- and macro-architecture. In this study, a unique blend of starch-based polymer powders (cornstarch, dextran and gelatin) was developed for the 3DP process. Cylindrical scaffolds of five different designs were fabricated and post-processed to enhance the mechanical and chemical properties. The scaffold properties were characterised by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), porosity analysis and compression tests

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell-cell and cell-matrix interactions play a major role in tumor morphogenesis and cancer metastasis. Therefore, it is crucial to create a model with a biomimetic microenvironment that allows such interactions to fully represent the pathophysiology of a disease for an in vitro study. This is achievable by using three-dimensional (3D) models instead of conventional two-dimensional (2D) cultures with the aid of tissue engineering technology. We are now able to better address the complex intercellular interactions underlying prostate cancer (CaP) bone metastasis through such models. In this study, we assessed the interaction of CaP cells and human osteoblasts (hOBs) within a tissue engineered bone (TEB) construct. Consistent with other in vivo studies, our findings show that intercellular and CaP cell-bone matrix interactions lead to elevated levels of matrix metalloproteinases, steroidogenic enzymes and the CaP biomarker, prostate specific antigen (PSA); all associated with CaP metastasis. Hence, it highlights the physiological relevance of this model. We believe that this model will provide new insights for understanding of the previously poorly understood molecular mechanisms of bone metastasis, which will foster further translational studies, and ultimately offer a potential tool for drug screening. © 2010 Landes Bioscience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behaviour of cells cultured within three-dimensional (3D) structures rather than onto two-dimensional (2D) culture plastic more closely reflects their in vivo responses. Consequently, 3D culture systems are becoming crucial scientific tools in cancer cell research. We used a novel 3D culture concept to assess cell-matrix interactions implicated in carcinogenesis: a synthetic hydrogel matrix equipped with key biomimetic features, namely incorporated cell integrin-binding motifs (e.g. RGD peptides) and the ability of being degraded by cell-secreted proteases (e.g. matrix metalloproteases). As a cell model, we chose epithelial ovarian cancer, an aggressive disease typically diagnosed at an advanced stage when chemoresistance occurs. Both cell lines used (OV-MZ-6, SKOV-3) proliferated similarly in 2D, but not in 3D. Spheroid formation was observed exclusively in 3D when cells were embedded within hydrogels. By exploiting the design flexibility of the hydrogel characteristics, we showed that proliferation in 3D was dependent on cell-integrin engagement and the ability of cells to proteolytically remodel their extracellular microenvironment. Higher survival rates after exposure to the anti-cancer drug paclitaxel were observed in cell spheroids grown in hydrogels (40-60%) compared to cell monolayers in 2D (20%). Thus, 2D evaluation of chemosensitivity may not reflect pathophysiological events seen in patients. Because of the design flexibility of their characteristics and their stability in long-term cultures (28 days), these biomimetic hydrogels represent alternative culture systems for the increasing demand in cancer research for more versatile, physiologically relevant and reproducible 3D matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our strategy entails investigating the influence of varied concentrations (0, 10, 100 and 1000 ng/ml) of human recombinant bone morphogenetic protein-2 (rhBMP-2) on the osteogenic expression of canine osteoblasts, seeded onto poly-caprolactone 20% tricalcium phosphate (PCL-TCP) scaffolds in vitro. Biochemical assay revealed that groups with rhBMP-2 displayed an initial burst in cell growth that was not dose-dependent. However, after 13 days, cell growth declined to a value similar to control. Significantly less cell growth was observed for construct with 1000 ng/ml of rhBMP-2 from 20 days onwards. Confocal microscopy confirmed viability of osteoblasts and at day 20, groups seeded with rhBMP-2 displayed heightened cell death as compared to control. Phase contrast and scanning electron microscopy revealed that osteoblasts heavily colonized surfaces, rods and pores of the PCL-TCP scaffolds. This was consistent for all groups. Finally, Von Kossa and osteocalcin assays demonstrated that cells from all groups maintained their osteogenic phenotype throughout the experiment. Calcification was observed as early as four days after stimulation for groups seeded with rhBMP-2. In conclusion, rhBMP-2 seems to enhance the differentiated function of canine osteoblasts in a non-dose dependent manner. This resulted in accelerated mineralization, followed by death of osteoblasts as they underwent terminal differentiation. Notably, PCL-TCP scaffolds seeded only with canine osteoblasts could sustain excellent osteogenic expression in vitro. Hence, the synergy of PCL with bioactive TCP and rhBMP-2 in a novel composite scaffold, could offer an exciting approach for bone regeneration.