978 resultados para 3D reconstruction accuracy
Resumo:
The 3D reconstruction of a Golgi-stained dendritic tree from a serial stack of images captured with a transmitted light bright-field microscope is investigated. Modifications to the bootstrap filter are discussed such that the tree structure may be estimated recursively as a series of connected segments. The tracking performance of the bootstrap particle filter is compared against Differential Evolution, an evolutionary global optimisation method, both in terms of robustness and accuracy. It is found that the particle filtering approach is significantly more robust and accurate for the data considered.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
[EN] In the last years we have developed some methods for 3D reconstruction. First we began with the problem of reconstructing a 3D scene from a stereoscopic pair of images. We developed some methods based on energy functionals which produce dense disparity maps by preserving discontinuities from image boundaries. Then we passed to the problem of reconstructing a 3D scene from multiple views (more than 2). The method for multiple view reconstruction relies on the method for stereoscopic reconstruction. For every pair of consecutive images we estimate a disparity map and then we apply a robust method that searches for good correspondences through the sequence of images. Recently we have proposed several methods for 3D surface regularization. This is a postprocessing step necessary for smoothing the final surface, which could be afected by noise or mismatch correspondences. These regularization methods are interesting because they use the information from the reconstructing process and not only from the 3D surface. We have tackled all these problems from an energy minimization approach. We investigate the associated Euler-Lagrange equation of the energy functional, and we approach the solution of the underlying partial differential equation (PDE) using a gradient descent method.
Resumo:
Reconstruction of patient-specific 3D bone surface from 2D calibrated fluoroscopic images and a point distribution model is discussed. We present a 2D/3D reconstruction scheme combining statistical extrapolation and regularized shape deformation with an iterative image-to-model correspondence establishing algorithm, and show its application to reconstruct the surface of proximal femur. The image-to-model correspondence is established using a non-rigid 2D point matching process, which iteratively uses a symmetric injective nearest-neighbor mapping operator and 2D thin-plate splines based deformation to find a fraction of best matched 2D point pairs between features detected from the fluoroscopic images and those extracted from the 3D model. The obtained 2D point pairs are then used to set up a set of 3D point pairs such that we turn a 2D/3D reconstruction problem to a 3D/3D one. We designed and conducted experiments on 11 cadaveric femurs to validate the present reconstruction scheme. An average mean reconstruction error of 1.2 mm was found when two fluoroscopic images were used for each bone. It decreased to 1.0 mm when three fluoroscopic images were used.
Resumo:
In this paper, a novel method to simulate radio propagation is presented. The method consists of two steps: automatic 3D scenario reconstruction and propagation modeling. For 3D reconstruction, a machine learning algorithm is adopted and improved to automatically recognize objects in pictures taken from target regions, and 3D models are generated based on the recognized objects. The propagation model employs a ray tracing algorithm to compute signal strength for each point on the constructed 3D map. Our proposition reduces, or even eliminates, infrastructure cost and human efforts during the construction of realistic 3D scenes used in radio propagation modeling. In addition, the results obtained from our propagation model proves to be both accurate and efficient
Resumo:
Self-organising neural models have the ability to provide a good representation of the input space. In particular the Growing Neural Gas (GNG) is a suitable model because of its flexibility, rapid adaptation and excellent quality of representation. However, this type of learning is time-consuming, especially for high-dimensional input data. Since real applications often work under time constraints, it is necessary to adapt the learning process in order to complete it in a predefined time. This paper proposes a Graphics Processing Unit (GPU) parallel implementation of the GNG with Compute Unified Device Architecture (CUDA). In contrast to existing algorithms, the proposed GPU implementation allows the acceleration of the learning process keeping a good quality of representation. Comparative experiments using iterative, parallel and hybrid implementations are carried out to demonstrate the effectiveness of CUDA implementation. The results show that GNG learning with the proposed implementation achieves a speed-up of 6× compared with the single-threaded CPU implementation. GPU implementation has also been applied to a real application with time constraints: acceleration of 3D scene reconstruction for egomotion, in order to validate the proposal.
Resumo:
3D Reconstruction is the process used to obtain a detailed graphical model in three dimensions that represents some real objectified scene. This process uses sequences of images taken from the scene, so it can automatically extract the information about the depth of feature points. These points are then highlighted using some computational technique on the images that compose the used dataset. Using SURF feature points this work propose a model for obtaining depth information of feature points detected by the system. At the ending, the proposed system extract three important information from the images dataset: the 3D position for feature points; relative rotation and translation matrices between images; the realtion between the baseline for adjacent images and the 3D point accuracy error found.
Resumo:
Il existe désormais une grande variété de lentilles panoramiques disponibles sur le marché dont certaines présentant des caractéristiques étonnantes. Faisant partie de cette dernière catégorie, les lentilles Panomorphes sont des lentilles panoramiques anamorphiques dont le profil de distorsion est fortement non-uniforme, ce qui cause la présence de zones de grandissement augmenté dans le champ de vue. Dans un contexte de robotique mobile, ces particularités peuvent être exploitées dans des systèmes stéréoscopiques pour la reconstruction 3D d’objets d’intérêt qui permettent à la fois une bonne connaissance de l’environnement, mais également l’accès à des détails plus fins en raison des zones de grandissement augmenté. Cependant, à cause de leur complexité, ces lentilles sont difficiles à calibrer et, à notre connaissance, aucune étude n’a réellement été menée à ce propos. L’objectif principal de cette thèse est la conception, l’élaboration et l’évaluation des performances de systèmes stéréoscopiques Panomorphes. Le calibrage a été effectué à l’aide d’une technique établie utilisant des cibles planes et d’une boîte à outils de calibrage dont l’usage est répandu. De plus, des techniques mathématiques nouvelles visant à rétablir la symétrie de révolution dans l’image (cercle) et à uniformiser la longueur focale (cercle uniforme) ont été développées pour voir s’il était possible d’ainsi faciliter le calibrage. Dans un premier temps, le champ de vue a été divisé en zones à l’intérieur desquelles la longueur focale instantanée varie peu et le calibrage a été effectué pour chacune d’entre elles. Puis, le calibrage général des systèmes a aussi été réalisé pour tout le champ de vue simultanément. Les résultats ont montré que la technique de calibrage par zone ne produit pas de gain significatif quant à la qualité des reconstructions 3D d’objet d’intérêt par rapport au calibrage général. Cependant, l’étude de cette nouvelle approche a permis de réaliser une évaluation des performances des systèmes stéréoscopiques Panomorphes sur tout le champ de vue et de montrer qu’il est possible d’effectuer des reconstructions 3D de qualité dans toutes les zones. De plus, la technique mathématique du cercle a produit des résultats de reconstructions 3D en général équivalents à l’utilisation des coordonnées originales. Puisqu’il existe des outils de calibrage qui, contrairement à celui utilisé dans ce travail, ne disposent que d’un seul degré de liberté sur la longueur focale, cette technique pourrait rendre possible le calibrage de lentilles Panomorphes à l’aide de ceux-ci. Finalement, certaines conclusions ont pu être dégagées quant aux facteurs déterminants influençant la qualité de la reconstruction 3D à l’aide de systèmes stéréoscopiques Panomorphes et aux caractéristiques à privilégier dans le choix des lentilles. La difficulté à calibrer les optiques Panomorphes en laboratoire a mené à l’élaboration d’une technique de calibrage virtuel utilisant un logiciel de conception optique et une boîte à outils de calibrage. Cette approche a permis d’effectuer des simulations en lien avec l’impact des conditions d’opération sur les paramètres de calibrage et avec l’effet des conditions de calibrage sur la qualité de la reconstruction. Des expérimentations de ce type sont pratiquement impossibles à réaliser en laboratoire mais représentent un intérêt certain pour les utilisateurs. Le calibrage virtuel d’une lentille traditionnelle a aussi montré que l’erreur de reprojection moyenne, couramment utilisée comme façon d’évaluer la qualité d’un calibrage, n’est pas nécessairement un indicateur fiable de la qualité de la reconstruction 3D. Il est alors nécessaire de disposer de données supplémentaires pour juger adéquatement de la qualité d’un calibrage.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física
Resumo:
The choice of genotyping families vs unrelated individuals is a critical factor in any large-scale linkage disequilibrium (LD) study. The use of unrelated individuals for such studies is promising, but in contrast to family designs, unrelated samples do not facilitate detection of genotyping errors, which have been shown to be of great importance for LD and linkage studies and may be even more important in genotyping collaborations across laboratories. Here we employ some of the most commonly-used analysis methods to examine the relative accuracy of haplotype estimation using families vs unrelateds in the presence of genotyping error. The results suggest that even slight amounts of genotyping error can significantly decrease haplotype frequency and reconstruction accuracy, that the ability to detect such errors in large families is essential when the number/complexity of haplotypes is high (low LD/common alleles). In contrast, in situations of low haplotype complexity (high LD and/or many rare alleles) unrelated individuals offer such a high degree of accuracy that there is little reason for less efficient family designs. Moreover, parent-child trios, which comprise the most popular family design and the most efficient in terms of the number of founder chromosomes per genotype but which contain little information for error detection, offer little or no gain over unrelated samples in nearly all cases, and thus do not seem a useful sampling compromise between unrelated individuals and large families. The implications of these results are discussed in the context of large-scale LD mapping projects such as the proposed genome-wide haplotype map.