959 resultados para 3D printing technology


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The performance, energy efficiency and cost improvements due to traditional technology scaling have begun to slow down and present diminishing returns. Underlying reasons for this trend include fundamental physical limits of transistor scaling, the growing significance of quantum effects as transistors shrink, and a growing mismatch between transistors and interconnects regarding size, speed and power. Continued Moore's Law scaling will not come from technology scaling alone, and must involve improvements to design tools and development of new disruptive technologies such as 3D integration. 3D integration presents potential improvements to interconnect power and delay by translating the routing problem into a third dimension, and facilitates transistor density scaling independent of technology node. Furthermore, 3D IC technology opens up a new architectural design space of heterogeneously-integrated high-bandwidth CPUs. Vertical integration promises to provide the CPU architectures of the future by integrating high performance processors with on-chip high-bandwidth memory systems and highly connected network-on-chip structures. Such techniques can overcome the well-known CPU performance bottlenecks referred to as memory and communication wall. However the promising improvements to performance and energy efficiency offered by 3D CPUs does not come without cost, both in the financial investments to develop the technology, and the increased complexity of design. Two main limitations to 3D IC technology have been heat removal and TSV reliability. Transistor stacking creates increases in power density, current density and thermal resistance in air cooled packages. Furthermore the technology introduces vertical through silicon vias (TSVs) that create new points of failure in the chip and require development of new BEOL technologies. Although these issues can be controlled to some extent using thermal-reliability aware physical and architectural 3D design techniques, high performance embedded cooling schemes, such as micro-fluidic (MF) cooling, are fundamentally necessary to unlock the true potential of 3D ICs. A new paradigm is being put forth which integrates the computational, electrical, physical, thermal and reliability views of a system. The unification of these diverse aspects of integrated circuits is called Co-Design. Independent design and optimization of each aspect leads to sub-optimal designs due to a lack of understanding of cross-domain interactions and their impacts on the feasibility region of the architectural design space. Co-Design enables optimization across layers with a multi-domain view and thus unlocks new high-performance and energy efficient configurations. Although the co-design paradigm is becoming increasingly necessary in all fields of IC design, it is even more critical in 3D ICs where, as we show, the inter-layer coupling and higher degree of connectivity between components exacerbates the interdependence between architectural parameters, physical design parameters and the multitude of metrics of interest to the designer (i.e. power, performance, temperature and reliability). In this dissertation we present a framework for multi-domain co-simulation and co-optimization of 3D CPU architectures with both air and MF cooling solutions. Finally we propose an approach for design space exploration and modeling within the new Co-Design paradigm, and discuss the possible avenues for improvement of this work in the future.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As the semiconductor industry struggles to maintain its momentum down the path following the Moore's Law, three dimensional integrated circuit (3D IC) technology has emerged as a promising solution to achieve higher integration density, better performance, and lower power consumption. However, despite its significant improvement in electrical performance, 3D IC presents several serious physical design challenges. In this dissertation, we investigate physical design methodologies for 3D ICs with primary focus on two areas: low power 3D clock tree design, and reliability degradation modeling and management. Clock trees are essential parts for digital system which dissipate a large amount of power due to high capacitive loads. The majority of existing 3D clock tree designs focus on minimizing the total wire length, which produces sub-optimal results for power optimization. In this dissertation, we formulate a 3D clock tree design flow which directly optimizes for clock power. Besides, we also investigate the design methodology for clock gating a 3D clock tree, which uses shutdown gates to selectively turn off unnecessary clock activities. Different from the common assumption in 2D ICs that shutdown gates are cheap thus can be applied at every clock node, shutdown gates in 3D ICs introduce additional control TSVs, which compete with clock TSVs for placement resources. We explore the design methodologies to produce the optimal allocation and placement for clock and control TSVs so that the clock power is minimized. We show that the proposed synthesis flow saves significant clock power while accounting for available TSV placement area. Vertical integration also brings new reliability challenges including TSV's electromigration (EM) and several other reliability loss mechanisms caused by TSV-induced stress. These reliability loss models involve complex inter-dependencies between electrical and thermal conditions, which have not been investigated in the past. In this dissertation we set up an electrical/thermal/reliability co-simulation framework to capture the transient of reliability loss in 3D ICs. We further derive and validate an analytical reliability objective function that can be integrated into the 3D placement design flow. The reliability aware placement scheme enables co-design and co-optimization of both the electrical and reliability property, thus improves both the circuit's performance and its lifetime. Our electrical/reliability co-design scheme avoids unnecessary design cycles or application of ad-hoc fixes that lead to sub-optimal performance. Vertical integration also enables stacking DRAM on top of CPU, providing high bandwidth and short latency. However, non-uniform voltage fluctuation and local thermal hotspot in CPU layers are coupled into DRAM layers, causing a non-uniform bit-cell leakage (thereby bit flip) distribution. We propose a performance-power-resilience simulation framework to capture DRAM soft error in 3D multi-core CPU systems. In addition, a dynamic resilience management (DRM) scheme is investigated, which adaptively tunes CPU's operating points to adjust DRAM's voltage noise and thermal condition during runtime. The DRM uses dynamic frequency scaling to achieve a resilience borrow-in strategy, which effectively enhances DRAM's resilience without sacrificing performance. The proposed physical design methodologies should act as important building blocks for 3D ICs and push 3D ICs toward mainstream acceptance in the near future.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work is going to show the activities performed in the frame of my PhD studies at the University of Bologna, under the supervision of Prof. Mauro Comes Franchini, at the Department of Industrial Chemistry “Toso Montanari”. The main topic of this dissertation will be the study of organic-inorganic hybrid nanostructures and materials for advanced applications in different fields of materials technology and development such as theranostics, organic electronics and additive manufacturing, also known as 3D printing. This work is therefore divided into three chapters, that recall the fundamentals of each subject and to recap the state-of-the-art of scientific research around each topic. In each chapter, the published works and preliminary results obtained during my PhD career will be discussed in detail.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Il presente lavoro di tesi si è incentrato sulla preparazione e caratterizzazione di manufatti elastomerici mediante Additive Manufacturing, sfruttabili per l'abbigliamento sportivo. Sono stati studiati diversi parametri di stampa, tra cui la geometria di riempimento, angoli di deposizione, infill e velocità di stampa, al fine di ottenere prestazioni ottimizzate confrontabili con materiali convenzionali. Inoltre sono state utilizzate per lo scopo diverse matrici elastomeriche caratterizzate da differente durezza Shore A. Le proprietà termiche dei manufatti stampati sono state studiate attraverso analisi TGA e DSC. Invece, le prestazioni meccaniche sono state analizzate attraverso DMA, prove di trazione e prove di compressione/espansione. Infine, è stato sviluppato un materiale innovativo nanocomposito al fine di ampliare il campo di utilizzo della FDM. Il materiale è stato caratterizzato tramite le classiche tecniche di analisi termiche e meccaniche.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

L'osteoartrite (OA) è una patologia infiammatorio/degenerativa ossea per la quale non sono disponibili terapie causali efficaci ma solo approcci palliativi per la riduzione del dolore cronico. E’ quindi giustificato un investimento per individuare nuove strategie di trattamento. In quest’ottica, lo scopo di questa tesi è stato quello di indagare l’efficacia di polyplexi a base di chitosano o di PEI-g-PEG in un modello cellulare 3D in vitro basato su un hydrogel di Gellan Gum Metacrilato (GGMA) con a bordo condrociti in condizioni simulate di OA. Inizialmente sono state studiate la dimensione e il potenziale-Z di un pool di formulazioni di poliplexi. Quindi se ne è valutata la citocompatibilità utilizzando cellule staminali mesenchimali immortalizzate Y201. Infine, una miscela di GGMA, cellule e polyplexi è stata utilizzata per la stampa 3D di campioni che sono stati coltivati fino a 14 giorni. La condizione OA è stata simulata trattando le cellule con una miscela di citochine implicate nello sviluppo della malattia. Tutte le formulazioni a base di chitosano e due basate su PEI-g-PEG si sono dimostrate citocompatibili e sono hanno veicolato i miRNA nelle cellule (come mostrato dai risultati di analisi in fluorescenza). I risultati delle colorazioni H&E e AlcianBlue hanno confermato che il terreno condizionato ha ben ricreato le condizioni di OA. I polyplexi a base di chitosano e PEI-g-PEG hanno controbilanciato gli effetti delle citochine. Risultati incoraggianti, anche se da approfondire ulteriormente, provengono anche dall’analisi di espressione (RT-PCR) di cinque geni specifici della cartilagine. Concludendo, questo modello ha ben riprodotto le condizioni di OA in vitro; il chitosano ha mostrato di essere un adeguato veicolo per un trattamento a base di miRNA; il PEI-g-PEG si propone come un'alternativa più economica e ragionevolmente affidabile, sebbene il rischio di citotossicità alle concentrazioni più elevate richieda una più esteva validazione sperimentale.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we show the design of passive UHF RFID tag antenna on cork substrate. Due to the cork sensitivity to humidity changes, we can use the developed sensor to sense changes in the relative humidity of the environment, without the need for batteries. The antenna is built using inkjet printing technology, which allows a good accuracy of the design manufacturing. The sensor proved usable for humidity changes detection with a variation of threshold power from 11 to 15 dB between 60 and near 100% humidity levels. Presenting, therefore, reading ranges between 3 to 5 meters. © 2015 EurAAP.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to the importance and wide applications of the DNA analysis, there is a need to make genetic analysis more available and more affordable. As such, the aim of this PhD thesis is to optimize a colorimetric DNA biosensor based on gold nanoprobes developed in CEMOP by reducing its price and the needed volume of solution without compromising the device sensitivity and reliability, towards the point of care use. Firstly, the price of the biosensor was decreased by replacing the silicon photodetector by a low cost, solution processed TiO2 photodetector. To further reduce the photodetector price, a novel fabrication method was developed: a cost-effective inkjet printing technology that enabled to increase TiO2 surface area. Secondly, the DNA biosensor was optimized by means of microfluidics that offer advantages of miniaturization, much lower sample/reagents consumption, enhanced system performance and functionality by integrating different components. In the developed microfluidic platform, the optical path length was extended by detecting along the channel and the light was transmitted by optical fibres enabling to guide the light very close to the analysed solution. Microfluidic chip of high aspect ratio (~13), smooth and nearly vertical sidewalls was fabricated in PDMS using a SU-8 mould for patterning. The platform coupled to the gold nanoprobe assay enabled detection of Mycobacterium tuberculosis using 3 8l on DNA solution, i.e. 20 times less than in the previous state-of-the-art. Subsequently, the bio-microfluidic platform was optimized in terms of cost, electrical signal processing and sensitivity to colour variation, yielding 160% improvement of colorimetric AuNPs analysis. Planar microlenses were incorporated to converge light into the sample and then to the output fibre core increasing 6 times the signal-to-losses ratio. The optimized platform enabled detection of single nucleotide polymorphism related with obesity risk (FTO) using target DNA concentration below the limit of detection of the conventionally used microplate reader (i.e. 15 ng/μl) with 10 times lower solution volume (3 μl). The combination of the unique optical properties of gold nanoprobes with microfluidic platform resulted in sensitive and accurate sensor for single nucleotide polymorphism detection operating using small volumes of solutions and without the need for substrate functionalization or sophisticated instrumentation. Simultaneously, to enable on chip reagents mixing, a PDMS micromixer was developed and optimized for the highest efficiency, low pressure drop and short mixing length. The optimized device shows 80% of mixing efficiency at Re = 0.1 in 2.5 mm long mixer with the pressure drop of 6 Pa, satisfying requirements for the application in the microfluidic platform for DNA analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper addresses the potential of polypropylene (PP) as a candidate for fused deposition modeling (FDM)-based 3D printing technique. The entire filament production chain is evaluated, starting with the PP pellets, filament production by extrusion and test samples printing. This strategy enables a true comparison between parts printed with parts manufactured by compression molding, using the same grade of raw material. Printed samples were mechanically characterized and the influence of filament orientation, layer thickness, infill degree and material was assessed. Regarding the latter, two grades of PP were evaluated: a glass-fiber reinforced and a neat, non-reinforced, one. The results showed the potential of the FDM to compete with conventional techniques, especially for the production of small series of parts/components; also, it was showed that this technique allows the production of parts with adequate mechanical performance and, therefore, does not need to be restricted to the production of mockups and prototypes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado em Engenharia Mecânica

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Mecânica

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The literature dealing with the interpretation of results of examinations performed on "printed" documents is very limited. The absence of published literature reflects the absence of formal guidelines to help scientists assess the relationship between a questioned document and a particular printing technology. Generally, every printout, independent of the printing technology, may bear traces induced by characteristics of manufacture and/or acquired features of the printing device. A logical approach to help the scientist in the formal interpretation of such findings involves the consideration of a likelihood ratio. Three examples aim to show the application of this approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A review dealing with the use of screen-printing technology to manufacture disposable electrodes is presented, covering in details virtually all the publications in the area up to early 1997 and including 206 references. The elements and different strategies on constructing modified electrodes are highlighted. Commercial and Home-made ink recipes are discussed. Microelectrode arrays, built by the combination of photostructuring and screen-printing technologies to the mass production of advanced disposable sensors, are also discussed. Future research trends are predicted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This thesis examined packaging inks suitable for folding cartons used in food packaging. The recent cases of compounds migrating from packaging inks into packed food, have forced the packaging ink manufacturers to develop inks that do not include substances at a level, that may pose a risk to the health of a consumer or to the quality of packed food. Food packaging is a sensitive area and subject to extensive legislation. This research presents the current situation on regulatory documents that can be used to demonstrate the safety of packaging inks used in food packaging. In the research, data was also collected on the available packaging inks for food packaging in packaging ink market. Test printing was performed with five printing inks and three varnishes on Ensocoat board, produced by Stora Enso. Tests results regarding print quality, runnability, sensory properties and migration were analysed. The packaging inks with the finest performance in the tests were ultra violet curing printing ink and varnish. The results showed that ultra violet curing printing technology in food contact applications is an important research area, with further research possibly being able to redeem the UV technologies' bad reputation within the packaging supply chain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of conducting this thesis is to gather around information about additive manufacturing and to design a product to be additively manufactured. The specific manufacturing method dealt with in this thesis, is powder bed fusion of metals. Therefore when mentioning additive manufacturing in this thesis, it is referred to powder bed fusion of metals. The literature review focuses on the principle of powder bed fusion, the general process chain in additive manufacturing, design rules for additive manufacturing. Examples of success stories in additive manufacturing and reasons for selecting parts to be manufactured with additive manufacturing are also explained in literature review. This knowledge is demanded to understand the experimental part of the thesis. The experimental part of the thesis is divided into two parts. Part A concentrates on finding proper geometry for building self-supporting pipes and proper parameters for support structures of them. Part B of the experimental part concentrates on a case study of designing a product for additive manufacturing. As a result of experimental part A, the design process of self-supporting pipes, results of visual analysis and results of 3D scanning are presented. As a result of experimental part B the design process of the product is presented and compared to the original model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Este trabajo busca identificar y definir porque la tecnología RFID puede ser un buen negocio de oportunidad en el mercado Colombiano, cada vez esté, está más enfocado en generar procesos de mejora continua que produzcan eficiencia al interior de las organizaciones, actualmente el uso de la tecnología es una herramienta clave para que las organizaciones se mantengan a la vanguardia. Con base en el estudio vemos que la tecnología RFID, genera eficiencia en el flujo de la información, mejora el control de inventarios y genera seguridad en estos, además de la disminución en los procesos y operaciones, e incrementa la velocidad en la toma de decisiones, por otro lado existe un mercado a explotar que es el de los hoteles, en la medida en que estos pueden controlar sus inventarios de objetos como sabanas, cobijas, etc. Evitando perder estos productos por robos. Un problema de esta tecnología son los altos costos, que impiden que empresas medianas y pequeñas puedan invertir en estos procesos.