976 resultados para 3D point cloud file as 3Ddxf


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we describe a semantic localization dataset for indoor environments named ViDRILO. The dataset provides five sequences of frames acquired with a mobile robot in two similar office buildings under different lighting conditions. Each frame consists of a point cloud representation of the scene and a perspective image. The frames in the dataset are annotated with the semantic category of the scene, but also with the presence or absence of a list of predefined objects appearing in the scene. In addition to the frames and annotations, the dataset is distributed with a set of tools for its use in both place classification and object recognition tasks. The large number of labeled frames in conjunction with the annotation scheme make this dataset different from existing ones. The ViDRILO dataset is released for use as a benchmark for different problems such as multimodal place classification and object recognition, 3D reconstruction or point cloud data compression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A presente dissertação apresenta uma solução para o problema de modelização tridimensional de galerias subterrâneas. O trabalho desenvolvido emprega técnicas provenientes da área da robótica móvel para obtenção um sistema autónomo móvel de modelização, capaz de operar em ambientes não estruturados sem acesso a sistemas de posicionamento global, designadamente GPS. Um sistema de modelização móvel e autónomo pode ser bastante vantajoso, pois constitui um método rápido e simples de monitorização das estruturas e criação de representações virtuais das galerias com um elevado nível de detalhe. O sistema de modelização desloca-se no interior dos túneis para recolher informações sensoriais sobre a geometria da estrutura. A tarefa de organização destes dados com vista _a construção de um modelo coerente, exige um conhecimento exacto do percurso praticado pelo sistema, logo o problema de localização da plataforma sensorial tem que ser resolvido. A formulação de um sistema de localização autónoma tem que superar obstáculos que se manifestam vincadamente nos ambientes underground, tais como a monotonia estrutural e a já referida ausência de sistemas de posicionamento global. Neste contexto, foi abordado o conceito de SLAM (Simultaneous Loacalization and Mapping) para determinação da localização da plataforma sensorial em seis graus de liberdade. Seguindo a abordagem tradicional, o núcleo do algoritmo de SLAM consiste no filtro de Kalman estendido (EKF { Extended Kalman Filter ). O sistema proposto incorpora métodos avançados do estado da arte, designadamente a parametrização em profundidade inversa (Inverse Depth Parametrization) e o método de rejeição de outliers 1-Point RANSAC. A contribuição mais importante do método por nós proposto para o avanço do estado da arte foi a fusão da informação visual com a informação inercial. O algoritmo de localização foi testado com base em dados reais, adquiridos no interior de um túnel rodoviário. Os resultados obtidos permitem concluir que, ao fundir medidas inerciais com informações visuais, conseguimos evitar o fenómeno de degeneração do factor de escala, comum nas aplicações de localização através de sistemas puramente monoculares. Provámos simultaneamente que a correcção de um sistema de localização inercial através da consideração de informações visuais é eficaz, pois permite suprimir os desvios de trajectória que caracterizam os sistemas de dead reckoning. O algoritmo de modelização, com base na localização estimada, organiza no espaço tridimensional os dados geométricos adquiridos, resultando deste processo um modelo em nuvem de pontos, que posteriormente _e convertido numa malha triangular, atingindo-se assim uma representação mais realista do cenário original.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to limited budgets and reduced inspection staff, state departments of transportation (DOTs) are in need of innovative approaches for providing more efficient quality assurance on concrete paving projects. The goal of this research was to investigate and test new methods that can determine pavement thickness in real time. Three methods were evaluated: laser scanning, ultrasonic sensors, and eddy current sensors. Laser scanning, which scans the surface of the base prior to paving and then scans the surface after paving, can determine the thickness at any point. Also, scanning lasers provide thorough data coverage that can be used to calculate thickness variance accurately and identify any areas where the thickness is below tolerance. Ultrasonic and eddy current sensors also have the potential to measure thickness nondestructively at discrete points and may result in an easier method of obtaining thickness. There appear to be two viable approaches for measuring concrete pavement thickness during the paving operation: laser scanning and eddy current sensors. Laser scanning has proved to be a reliable technique in terms of its ability to provide virtual core thickness with low variability. Research is still required to develop a prototype system that integrates point cloud data from two scanners. Eddy current sensors have also proved to be a suitable alternative, and are probably closer to field implementation than the laser scanning approach. As a next step for this research project, it is suggested that a pavement thickness measuring device using eddy current sensors be created, which would involve both a handheld and paver-mounted version of the device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrated in a wide research assessing destabilizing and triggering factors to model cliff dynamic along the Dieppe's shoreline in High Normandy, this study aims at testing boat-based mobile LiDAR capabilities by scanning 3D point clouds of the unstable coastal cliffs. Two acquisition campaigns were performed in September 2012 and September 2013, scanning (1) a 30-km-long shoreline and (2) the same test cliffs in different environmental conditions and device settings. The potentials of collected data for 3D modelling, change detection and landslide monitoring were afterward assessed. By scanning during favourable meteorological and marine conditions and close to the coast, mobile LiDAR devices are able to quickly scan a long shoreline with median point spacing up to 10cm. The acquired data are then sufficiently detailed to map geomorphological features smaller than 0.5m2. Furthermore, our capability to detect rockfalls and erosion deposits (>m3) is confirmed, since using the classical approach of computing differences between sequential acquisitions reveals many cliff collapses between Pourville and Quiberville and only sparse changes between Dieppe and Belleville-sur-Mer. These different change rates result from different rockfall susceptibilities. Finally, we also confirmed the capability of the boat-based mobile LiDAR technique to monitor single large changes, characterizing the Dieppe landslide geometry with two main active scarps, retrogression up to 40m and about 100,000m3 of eroded materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the applications of airborne laser scanner data to forestry require that the point cloud be normalized, i.e., each point represents height from the ground instead of elevation. To normalize the point cloud, a digital terrain model (DTM), which is derived from the ground returns in the point cloud, is employed. Unfortunately, extracting accurate DTMs from airborne laser scanner data is a challenging task, especially in tropical forests where the canopy is normally very thick (partially closed), leading to a situation in which only a limited number of laser pulses reach the ground. Therefore, robust algorithms for extracting accurate DTMs in low-ground-point-densitysituations are needed in order to realize the full potential of airborne laser scanner data to forestry. The objective of this thesis is to develop algorithms for processing airborne laser scanner data in order to: (1) extract DTMs in demanding forest conditions (complex terrain and low number of ground points) for applications in forestry; (2) estimate canopy base height (CBH) for forest fire behavior modeling; and (3) assess the robustness of LiDAR-based high-resolution biomass estimation models against different field plot designs. Here, the aim is to find out if field plot data gathered by professional foresters can be combined with field plot data gathered by professionally trained community foresters and used in LiDAR-based high-resolution biomass estimation modeling without affecting prediction performance. The question of interest in this case is whether or not the local forest communities can achieve the level technical proficiency required for accurate forest monitoring. The algorithms for extracting DTMs from LiDAR point clouds presented in this thesis address the challenges of extracting DTMs in low-ground-point situations and in complex terrain while the algorithm for CBH estimation addresses the challenge of variations in the distribution of points in the LiDAR point cloud caused by things like variations in tree species and season of data acquisition. These algorithms are adaptive (with respect to point cloud characteristics) and exhibit a high degree of tolerance to variations in the density and distribution of points in the LiDAR point cloud. Results of comparison with existing DTM extraction algorithms showed that DTM extraction algorithms proposed in this thesis performed better with respect to accuracy of estimating tree heights from airborne laser scanner data. On the other hand, the proposed DTM extraction algorithms, being mostly based on trend surface interpolation, can not retain small artifacts in the terrain (e.g., bumps, small hills and depressions). Therefore, the DTMs generated by these algorithms are only suitable for forestry applications where the primary objective is to estimate tree heights from normalized airborne laser scanner data. On the other hand, the algorithm for estimating CBH proposed in this thesis is based on the idea of moving voxel in which gaps (openings in the canopy) which act as fuel breaks are located and their height is estimated. Test results showed a slight improvement in CBH estimation accuracy over existing CBH estimation methods which are based on height percentiles in the airborne laser scanner data. However, being based on the idea of moving voxel, this algorithm has one main advantage over existing CBH estimation methods in the context of forest fire modeling: it has great potential in providing information about vertical fuel continuity. This information can be used to create vertical fuel continuity maps which can provide more realistic information on the risk of crown fires compared to CBH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The representation of interfaces by means of the algebraic moving-least-squares (AMLS) technique is addressed. This technique, in which the interface is represented by an unconnected set of points, is interesting for evolving fluid interfaces since there is]to surface connectivity. The position of the surface points can thus be updated without concerns about the quality of any surface triangulation. We introduce a novel AMLS technique especially designed for evolving-interfaces applications that we denote RAMLS (for Robust AMLS). The main advantages with respect to previous AMLS techniques are: increased robustness, computational efficiency, and being free of user-tuned parameters. Further, we propose a new front-tracking method based on the Lagrangian advection of the unconnected point set that defines the RAMLS surface. We assume that a background Eulerian grid is defined with some grid spacing h. The advection of the point set makes the surface evolve in time. The point cloud can be regenerated at any time (in particular, we regenerate it each time step) by intersecting the gridlines with the evolved surface, which guarantees that the density of points on the surface is always well balanced. The intersection algorithm is essentially a ray-tracing algorithm, well-studied in computer graphics, in which a line (ray) is traced so as to detect all intersections with a surface. Also, the tracing of each gridline is independent and can thus be performed in parallel. Several tests are reported assessing first the accuracy of the proposed RAMLS technique, and then of the front-tracking method based on it. Comparison with previous Eulerian, Lagrangian and hybrid techniques encourage further development of the proposed method for fluid mechanics applications. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a methodology for automatic extraction of building roof contours from a Digital Elevation Model (DEM), which is generated through the regularization of an available laser point cloud. The methodology is based on two steps. First, in order to detect high objects (buildings, trees etc.), the DEM is segmented through a recursive splitting technique and a Bayesian merging technique. The recursive splitting technique uses the quadtree structure for subdividing the DEM into homogeneous regions. In order to minimize the fragmentation, which is commonly observed in the results of the recursive splitting segmentation, a region merging technique based on the Bayesian framework is applied to the previously segmented data. The high object polygons are extracted by using vectorization and polygonization techniques. Second, the building roof contours are identified among all high objects extracted previously. Taking into account some roof properties and some feature measurements (e. g., area, rectangularity, and angles between principal axes of the roofs), an energy function was developed based on the Markov Random Field (MRF) model. The solution of this function is a polygon set corresponding to building roof contours and is found by using a minimization technique, like the Simulated Annealing (SA) algorithm. Experiments carried out with laser scanning DEM's showed that the methodology works properly, as it delivered roof contours with approximately 90% shape accuracy and no false positive was verified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An indirect method for the georeferencing of 3D point clouds obtained with terrestrial laser scanning (TLS) data using control lines is presented. This technique could be used for rapid data acquisition where resources do not permit the use of expensive navigation sensors or the placement of pre-signalised targets. The most important characteristic is the development of a mathematical model based on the principle that the direction vector of the TLS straight line is coplanar with the plane defined by the origin of the TLS system, one endpoint of a control line and the direction vector of the control line in the ground reference coordinate system. The transformation parameters are estimated by minimising the distance between the control lines and their corresponding TLS straight lines. The proposed method was tested using both simulated and real data, and the advantages of this new approach are compared with conventional surveying methods. © 2013 This article is a U.S. Government work and is in the public domain in the USA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ES]El proyecto contiene módulos de simulación, procesado de datos, mapeo y localización, desarrollados en C++ utilizando ROS (Robot Operating System) y PCL (Point Cloud Library). Ha sido desarrollado bajo el proyecto de robótica submarina AVORA.Se han caracterizado el vehículo y el sensor, y se han analizado diferentes tecnologías de sensores y mapeo. Los datos pasan por tres etapas: Conversión a nube de puntos, filtrado por umbral, eliminación de puntos espureos y, opcionalmente, detección de formas. Estos datos son utilizados para construir un mapa de superficie multinivel. La otra herramienta desarrollada es un algoritmo de Punto más Cercano Iterativo (ICP) modificado, que tiene en cuenta el modo de funcionamiento del sonar de imagen utilizado.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual correspondence is a key computer vision task that aims at identifying projections of the same 3D point into images taken either from different viewpoints or at different time instances. This task has been the subject of intense research activities in the last years in scenarios such as object recognition, motion detection, stereo vision, pattern matching, image registration. The approaches proposed in literature typically aim at improving the state of the art by increasing the reliability, the accuracy or the computational efficiency of visual correspondence algorithms. The research work carried out during the Ph.D. course and presented in this dissertation deals with three specific visual correspondence problems: fast pattern matching, stereo correspondence and robust image matching. The dissertation presents original contributions to the theory of visual correspondence, as well as applications dealing with 3D reconstruction and multi-view video surveillance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Routine bridge inspections require labor intensive and highly subjective visual interpretation to determine bridge deck surface condition. Light Detection and Ranging (LiDAR) a relatively new class of survey instrument has become a popular and increasingly used technology for providing as-built and inventory data in civil applications. While an increasing number of private and governmental agencies possess terrestrial and mobile LiDAR systems, an understanding of the technology’s capabilities and potential applications continues to evolve. LiDAR is a line-of-sight instrument and as such, care must be taken when establishing scan locations and resolution to allow the capture of data at an adequate resolution for defining features that contribute to the analysis of bridge deck surface condition. Information such as the location, area, and volume of spalling on deck surfaces, undersides, and support columns can be derived from properly collected LiDAR point clouds. The LiDAR point clouds contain information that can provide quantitative surface condition information, resulting in more accurate structural health monitoring. LiDAR scans were collected at three study bridges, each of which displayed a varying degree of degradation. A variety of commercially available analysis tools and an independently developed algorithm written in ArcGIS Python (ArcPy) were used to locate and quantify surface defects such as location, volume, and area of spalls. The results were visual and numerically displayed in a user-friendly web-based decision support tool integrating prior bridge condition metrics for comparison. LiDAR data processing procedures along with strengths and limitations of point clouds for defining features useful for assessing bridge deck condition are discussed. Point cloud density and incidence angle are two attributes that must be managed carefully to ensure data collected are of high quality and useful for bridge condition evaluation. When collected properly to ensure effective evaluation of bridge surface condition, LiDAR data can be analyzed to provide a useful data set from which to derive bridge deck condition information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HYPOTHESIS A previously developed image-guided robot system can safely drill a tunnel from the lateral mastoid surface, through the facial recess, to the middle ear, as a viable alternative to conventional mastoidectomy for cochlear electrode insertion. BACKGROUND Direct cochlear access (DCA) provides a minimally invasive tunnel from the lateral surface of the mastoid through the facial recess to the middle ear for cochlear electrode insertion. A safe and effective tunnel drilled through the narrow facial recess requires a highly accurate image-guided surgical system. Previous attempts have relied on patient-specific templates and robotic systems to guide drilling tools. In this study, we report on improvements made to an image-guided surgical robot system developed specifically for this purpose and the resulting accuracy achieved in vitro. MATERIALS AND METHODS The proposed image-guided robotic DCA procedure was carried out bilaterally on 4 whole head cadaver specimens. Specimens were implanted with titanium fiducial markers and imaged with cone-beam CT. A preoperative plan was created using a custom software package wherein relevant anatomical structures of the facial recess were segmented, and a drill trajectory targeting the round window was defined. Patient-to-image registration was performed with the custom robot system to reference the preoperative plan, and the DCA tunnel was drilled in 3 stages with progressively longer drill bits. The position of the drilled tunnel was defined as a line fitted to a point cloud of the segmented tunnel using principle component analysis (PCA function in MatLab). The accuracy of the DCA was then assessed by coregistering preoperative and postoperative image data and measuring the deviation of the drilled tunnel from the plan. The final step of electrode insertion was also performed through the DCA tunnel after manual removal of the promontory through the external auditory canal. RESULTS Drilling error was defined as the lateral deviation of the tool in the plane perpendicular to the drill axis (excluding depth error). Errors of 0.08 ± 0.05 mm and 0.15 ± 0.08 mm were measured on the lateral mastoid surface and at the target on the round window, respectively (n =8). Full electrode insertion was possible for 7 cases. In 1 case, the electrode was partially inserted with 1 contact pair external to the cochlea. CONCLUSION The purpose-built robot system was able to perform a safe and reliable DCA for cochlear implantation. The workflow implemented in this study mimics the envisioned clinical procedure showing the feasibility of future clinical implementation.