956 resultados para 3D object recognition


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The project aims at advancing the state of the art in the use of context information for classification of image and video data. The use of context in the classification of images has been showed of great importance to improve the performance of actual object recognition systems. In our project we proposed the concept of Multi-scale Feature Labels as a general and compact method to exploit the local and global context. The feature extraction from the discriminative probability or classification confidence label field is of great novelty. Moreover the use of a multi-scale representation of the feature labels lead to a compact and efficient description of the context. The goal of the project has been also to provide a general-purpose method and prove its suitability in different image/video analysis problem. The two-year project generated 5 journal publications (plus 2 under submission), 10 conference publications (plus 2 under submission) and one patent (plus 1 pending). Of these publications, a relevant number make use of the main result of this project to improve the results in detection and/or segmentation of objects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Action representations can interact with object recognition processes. For example, so-called mirror neurons respond both when performing an action and when seeing or hearing such actions. Investigations of auditory object processing have largely focused on categorical discrimination, which begins within the initial 100 ms post-stimulus onset and subsequently engages distinct cortical networks. Whether action representations themselves contribute to auditory object recognition and the precise kinds of actions recruiting the auditory-visual mirror neuron system remain poorly understood. We applied electrical neuroimaging analyses to auditory evoked potentials (AEPs) in response to sounds of man-made objects that were further subdivided between sounds conveying a socio-functional context and typically cuing a responsive action by the listener (e.g. a ringing telephone) and those that are not linked to such a context and do not typically elicit responsive actions (e.g. notes on a piano). This distinction was validated psychophysically by a separate cohort of listeners. Beginning approximately 300 ms, responses to such context-related sounds significantly differed from context-free sounds both in the strength and topography of the electric field. This latency is >200 ms subsequent to general categorical discrimination. Additionally, such topographic differences indicate that sounds of different action sub-types engage distinct configurations of intracranial generators. Statistical analysis of source estimations identified differential activity within premotor and inferior (pre)frontal regions (Brodmann's areas (BA) 6, BA8, and BA45/46/47) in response to sounds of actions typically cuing a responsive action. We discuss our results in terms of a spatio-temporal model of auditory object processing and the interplay between semantic and action representations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multisensory processes facilitate perception of currently-presented stimuli and can likewise enhance later object recognition. Memories for objects originally encountered in a multisensory context can be more robust than those for objects encountered in an exclusively visual or auditory context [1], upturning the assumption that memory performance is best when encoding and recognition contexts remain constant [2]. Here, we used event-related potentials (ERPs) to provide the first evidence for direct links between multisensory brain activity at one point in time and subsequent object discrimination abilities. Across two experiments we found that individuals showing a benefit and those impaired during later object discrimination could be predicted by their brain responses to multisensory stimuli upon their initial encounter. These effects were observed despite the multisensory information being meaningless, task-irrelevant, and presented only once. We provide critical insights into the advantages associated with multisensory interactions; they are not limited to the processing of current stimuli, but likewise encompass the ability to determine the benefit of one's memories for object recognition in later, unisensory contexts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Multisensory memory traces established via single-trial exposures can impact subsequent visual object recognition. This impact appears to depend on the meaningfulness of the initial multisensory pairing, implying that multisensory exposures establish distinct object representations that are accessible during later unisensory processing. Multisensory contexts may be particularly effective in influencing auditory discrimination, given the purportedly inferior recognition memory in this sensory modality. The possibility of this generalization and the equivalence of effects when memory discrimination was being performed in the visual vs. auditory modality were at the focus of this study. First, we demonstrate that visual object discrimination is affected by the context of prior multisensory encounters, replicating and extending previous findings by controlling for the probability of multisensory contexts during initial as well as repeated object presentations. Second, we provide the first evidence that single-trial multisensory memories impact subsequent auditory object discrimination. Auditory object discrimination was enhanced when initial presentations entailed semantically congruent multisensory pairs and was impaired after semantically incongruent multisensory encounters, compared to sounds that had been encountered only in a unisensory manner. Third, the impact of single-trial multisensory memories upon unisensory object discrimination was greater when the task was performed in the auditory vs. visual modality. Fourth, there was no evidence for correlation between effects of past multisensory experiences on visual and auditory processing, suggestive of largely independent object processing mechanisms between modalities. We discuss these findings in terms of the conceptual short term memory (CSTM) model and predictive coding. Our results suggest differential recruitment and modulation of conceptual memory networks according to the sensory task at hand.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Local features are used in many computer vision tasks including visual object categorization, content-based image retrieval and object recognition to mention a few. Local features are points, blobs or regions in images that are extracted using a local feature detector. To make use of extracted local features the localized interest points are described using a local feature descriptor. A descriptor histogram vector is a compact representation of an image and can be used for searching and matching images in databases. In this thesis the performance of local feature detectors and descriptors is evaluated for object class detection task. Features are extracted from image samples belonging to several object classes. Matching features are then searched using random image pairs of a same class. The goal of this thesis is to find out what are the best detector and descriptor methods for such task in terms of detector repeatability and descriptor matching rate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the absence of cues for absolute depth measurements as binocular disparity, motion, or defocus, the absolute distance between the observer and a scene cannot be measured. The interpretation of shading, edges and junctions may provide a 3D model of the scene but it will not inform about the actual "size" of the space. One possible source of information for absolute depth estimation is the image size of known objects. However, this is computationally complex due to the difficulty of the object recognition process. Here we propose a source of information for absolute depth estimation that does not rely on specific objects: we introduce a procedure for absolute depth estimation based on the recognition of the whole scene. The shape of the space of the scene and the structures present in the scene are strongly related to the scale of observation. We demonstrate that, by recognizing the properties of the structures present in the image, we can infer the scale of the scene, and therefore its absolute mean depth. We illustrate the interest in computing the mean depth of the scene with application to scene recognition and object detection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tsunoda et al. (2001) recently studied the nature of object representation in monkey inferotemporal cortex using a combination of optical imaging and extracellular recordings. In particular, they examined IT neuron responses to complex natural objects and "simplified" versions thereof. In that study, in 42% of the cases, optical imaging revealed a decrease in the number of activation patches in IT as stimuli were "simplified". However, in 58% of the cases, "simplification" of the stimuli actually led to the appearance of additional activation patches in IT. Based on these results, the authors propose a scheme in which an object is represented by combinations of active and inactive columns coding for individual features. We examine the patterns of activation caused by the same stimuli as used by Tsunoda et al. in our model of object recognition in cortex (Riesenhuber 99). We find that object-tuned units can show a pattern of appearance and disappearance of features identical to the experiment. Thus, the data of Tsunoda et al. appear to be in quantitative agreement with a simple object-based representation in which an object's identity is coded by its similarities to reference objects. Moreover, the agreement of simulations and experiment suggests that the simplification procedure used by Tsunoda (2001) is not necessarily an accurate method to determine neuronal tuning.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a component-based approach for recognizing objects under large pose changes. From a set of training images of a given object we extract a large number of components which are clustered based on the similarity of their image features and their locations within the object image. The cluster centers build an initial set of component templates from which we select a subset for the final recognizer. In experiments we evaluate different sizes and types of components and three standard techniques for component selection. The component classifiers are finally compared to global classifiers on a database of four objects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Artifacts made by humans, such as items of furniture and houses, exhibit an enormous amount of variability in shape. In this paper, we concentrate on models of the shapes of objects that are made up of fixed collections of sub-parts whose dimensions and spatial arrangement exhibit variation. Our goals are: to learn these models from data and to use them for recognition. Our emphasis is on learning and recognition from three-dimensional data, to test the basic shape-modeling methodology. In this paper we also demonstrate how to use models learned in three dimensions for recognition of two-dimensional sketches of objects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Given a set of images of scenes containing different object categories (e.g. grass, roads) our objective is to discover these objects in each image, and to use this object occurrences to perform a scene classification (e.g. beach scene, mountain scene). We achieve this by using a supervised learning algorithm able to learn with few images to facilitate the user task. We use a probabilistic model to recognise the objects and further we classify the scene based on their object occurrences. Experimental results are shown and evaluated to prove the validity of our proposal. Object recognition performance is compared to the approaches of He et al. (2004) and Marti et al. (2001) using their own datasets. Furthermore an unsupervised method is implemented in order to evaluate the advantages and disadvantages of our supervised classification approach versus an unsupervised one

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The classical computer vision methods can only weakly emulate some of the multi-level parallelisms in signal processing and information sharing that takes place in different parts of the primates’ visual system thus enabling it to accomplish many diverse functions of visual perception. One of the main functions of the primates’ vision is to detect and recognise objects in natural scenes despite all the linear and non-linear variations of the objects and their environment. The superior performance of the primates’ visual system compared to what machine vision systems have been able to achieve to date, motivates scientists and researchers to further explore this area in pursuit of more efficient vision systems inspired by natural models. In this paper building blocks for a hierarchical efficient object recognition model are proposed. Incorporating the attention-based processing would lead to a system that will process the visual data in a non-linear way focusing only on the regions of interest and hence reducing the time to achieve real-time performance. Further, it is suggested to modify the visual cortex model for recognizing objects by adding non-linearities in the ventral path consistent with earlier discoveries as reported by researchers in the neuro-physiology of vision.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Previous functional imaging studies have shown that facilitated processing of a visual object on repeated, relative to initial, presentation (i.e., repetition priming) is associated with reductions in neural activity in multiple regions, including fusiforin/lateral occipital cortex. Moreover, activity reductions have been found, at diminished levels, when a different exemplar of an object is presented on repetition. In one previous study, the magnitude of diminished priming across exemplars was greater in the right relative to the left fusiform, suggesting greater exemplar specificity in the right. Another previous study, however, observed fusiform lateralization modulated by object viewpoint, but not object exemplar. The present fMRI study sought to determine whether the result of differential fusiform responses for perceptually different exemplars could be replicated. Furthermore, the role of the left fusiform cortex in object recognition was investigated via the inclusion of a lexical/semantic manipulation. Right fusiform cortex showed a significantly greater effect of exemplar change than left fusiform, replicating the previous result of exemplar-specific fusiform lateralization. Right fusiform and lateral occipital cortex were not differentially engaged by the lexical/semantic manipulation, suggesting that their role in visual object recognition is predominantly in the. C visual discrimination of specific objects. Activation in left fusiform cortex, but not left lateral occipital cortex, was modulated by both exemplar change and lexical/semantic manipulation, with further analysis suggesting a posterior-to-anterior progression between regions involved in processing visuoperceptual and lexical/semantic information about objects. The results are consistent with the view that the right fusiform plays a greater role in processing specific visual form information about objects, whereas the left fusiform is also involved in lexical/semantic processing. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tabletop computers featuring multi-touch input and object tracking are a common platform for research on Tangible User Interfaces (also known as Tangible Interaction). However, such systems are confined to sensing activity on the tabletop surface, disregarding the rich and relatively unexplored interaction canvas above the tabletop. This dissertation contributes with tCAD, a 3D modeling tool combining fiducial marker tracking, finger tracking and depth sensing in a single system. This dissertation presents the technical details of how these features were integrated, attesting to its viability through the design, development and early evaluation of the tCAD application. A key aspect of this work is a description of the interaction techniques enabled by merging tracked objects with direct user input on and above a table surface.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Visual correspondence is a key computer vision task that aims at identifying projections of the same 3D point into images taken either from different viewpoints or at different time instances. This task has been the subject of intense research activities in the last years in scenarios such as object recognition, motion detection, stereo vision, pattern matching, image registration. The approaches proposed in literature typically aim at improving the state of the art by increasing the reliability, the accuracy or the computational efficiency of visual correspondence algorithms. The research work carried out during the Ph.D. course and presented in this dissertation deals with three specific visual correspondence problems: fast pattern matching, stereo correspondence and robust image matching. The dissertation presents original contributions to the theory of visual correspondence, as well as applications dealing with 3D reconstruction and multi-view video surveillance.