991 resultados para 380.1


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Renal allograft donors are at risk of developing hypertension. Here, we hypothesized that this risk is at least in part explained by an enhanced intracellular availability of 11β-hydroxyglucocorticoids due to an increased 11β-hydroxysteroid dehydrogenase type 1 enzyme (11β-HSD1), an intracellular prereceptor activator of biologically inactive 11-ketocorticosteroids in the liver, and/or a diminished 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), an inactivator of 11β-hydroxyglucocorticoids in the kidney. To test this hypothesis, uninephrectomized (UNX) (n=9) and sham-operated (n=10) adult Sprague-Dawley rats were investigated. Mean arterial blood pressure and heart rate were measured continuously by telemetry for 6 days in week 5 after UNX. The mRNA of 11β-Hsd1 and 11β-Hsd2 in liver and kidney tissues were assessed by RT-PCR and the 11β-HSD activities were directly quantified in their corresponding tissues by determining the ratios of (tetrahydrocorticosterone+5α-tetrahydrocorticosterone)/tetrahydrodehydrocorticosterone ((THB+5α-THB)/THA) and of corticosterone/dehydrocorticosterone (B/A) by gas chromatography-mass spectrometry. The apparent total body activities of 11β-HSD1 and 11β-HSD2 were estimated using the urinary and plasma ratios of (THB+5α-THB)/THA and B/A. Mean arterial blood pressure was increased after UNX when compared with sham operation. Hepatic mRNA content of 11β-Hsd1 and hepatic, plasma, and urinary ratios of (THB+5α-THB)/THA were decreased after UNX, indicating diminished access of glucocorticoids to its receptors. In renal tissue, 11β-Hsd2 mRNA was reduced and B/A ratios measured in kidney, plasma, and urine were increased, indicating reduced 11β-HSD2 activity and enhanced access of glucocorticoids to mineralocorticoid receptors. Both 11β-HSD1 and 11β-HSD2 are downregulated after UNX in rats, a constellation considered to induce hypertension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Connective tissue growth factor (CTGF) participates in diverse fibrotic processes including glomerulosclerosis. The adenylyl cyclase agonist forskolin inhibits CTGF expression in mesangial cells by unclear mechanisms. We recently reported that the histone H3K79 methyltransferase disruptor of telomeric silencing-1 (Dot1) suppresses CTGF gene expression in collecting duct cells (J Clin Invest 117: 773-783, 2007) and HEK 293 cells (J Biol Chem In press). In the present study, we characterized the involvement of Dot1 in mediating the inhibitory effect of forskolin on CTGF transcription in mouse mesangial cells. Overexpression of Dot1 or treatment with forskolin dramatically suppressed basal CTGF mRNA levels and CTGF promoter-luciferase activity, while hypermethylating H3K79 in chromatin associated with the CTGF promoter. siRNA knockdown of Dot1 abrogated the inhibitory effect of forskolin on CTGF mRNA expression. Analysis of the Dot1 promoter sequence identified a CREB response element (CRE) at -384/-380. Overexpression of CREB enhanced forskolin-stimulated Dot1 promoter activity. A constitutively active CREB mutant (CREB-VP16) strongly induced Dot1 promoter-luciferase activity, whereas overexpression of CREBdLZ-VP16, which lacks the CREB DNA-binding domain, abolished this activation. Mutation of the -384/-380 CRE resulted in 70% lower levels of Dot1 promoter activity. ChIP assays confirmed CREB binding to the Dot1 promoter in chromatin. We conclude that forskolin stimulates CREB-mediated trans-activation of the Dot1 gene, which leads to hypermethylation of histone H3K79 at the CTGF promoter, and inhibition of CTGF transcription. These data are the first to describe regulation of the Dot1 gene, and disclose a complex network of genetic and epigenetic controls on CTGF transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frankfurter Latern, Reklamation zum Druck, Berliner Wespen, Beobachter, Geplante Auflösung der Geschäftsbeziehung

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador: