969 resultados para 3-Methyl-2-benzothiazoline hydrazone
Resumo:
In this paper, the method for the derivatization of carbohydrates with 1-phenyl-3-methyl-5-pyrazolone (PMP) was simplified. One-third of the derivatization time was saved. Five monosaccharide derivatives have been well separated by MEKC and HPLC under optimized conditions. Good reproducibility could be obtained with relative standard deviation (RSD) values of the migration times within 5.0 and 2.3%, respectively. Furthermore, the developed methods have been successfully applied to the analysis of carbohydrates in Aloe powder and food. These methods are quite useful for routine analysis of monosaccharides and oligosaccharides in real samples. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The extraction of rare earth elements from chloride medium by mixtures of sec-nonylphenoxy acetic acid (CA100) with bis(2,4,4-trimethylpentyl) dithiophosphinic acid (Cyanex301) or bis(2,4,4-trimethylpentyl) monothiophosphinic acid (Cyanex302) in n-heptane has been studied. The synergistic enhancement of the extraction of lanthanum (III) by mixtures of CA100 with Cyanex301 has been investigated using the methods of slope analysis and constant mole. The extracted complex of lanthanum (III) is determined. The logarithm of the equilibrium constant is calculated as - 1.41. The formation constants and the thermodynamic functions, Delta H, Delta G, and Delta S have also been determined.
Resumo:
The synergistic effect of 1-phenyl-3-methyl-4-benzoyl-pyrazalone-5 (HPMBP) and triisobutylphosphine sulphide (TIBPS, B) is investigated in the extraction of lanthanum(III) from chloride solution. Lanthanum(III) is extracted by the mixture as LaCl2.PMBP.B-0.5 instead of La(PMBP)(3).(HPMBP) which is extracted by HPMBP alone. The equilibrium constants and thermodynamic functions such as DeltaG, DeltaH and DeltaS are determined. The extraction of other rare earth ions by mixtures of HPMBP and TIBPS is also studied and the possibility of separating rare earth ions is discussed.
Resumo:
The kinetics of the acid-catalysed hydrolysis of cellobiose in the ionic liquid 1-ethyl-3-methylimidazolium chloride, [C(2)mim]Cl, was studied as a model for general lignocellulosic biomass hydrolysis in ionic liquid systems. The results show that the rate of the two competing reactions, polysaccharide hydrolysis and sugar decomposition, vary with acid strength, and that for acids with an aqueous pK(a) below approximately zero, the hydrolysis reaction is significantly faster than the degradation of glucose, thus allowing hydrolysis to be performed with a high selectivity in glucose. In tests with soluble cellulose, hemicellulose (xylan), and lignocellulosic biomass (Miscanthus grass), comparable hydrolysis rates were observed with bond scission occurring randomly along the biopolymer chains, in contrast to end-group hydrolysis observed with aqueous acids.
Resumo:
1,3-Dimethylimidazolium-2-carboxylate is formed in good yield, rather than the anticipated organic salt, 1,3-dimethylimidazolium methyl carbonate, as the reaction product resulting from both N-alkylation and C-carboxylation of 1-methylimidazole with dimethyl carbonate; the crystal structure of the zwitterion exhibits pi-stacked rings and two-dimensional sheets constructed by hydrogen-bonds from imidazolium-ring hydrogens to the carboxylate group.
Resumo:
The reaction of 4-phenylbut-3-en-2-one with cyanoacetamide is not confined to a 1 : 1 reaction [which results in formation of 3-cyano-6-methyl-4-phenylpyridin-2(1H)-one]. The reaction of 2 mole equivalents of 4-phenylbut-3-en-2-one with one of cyanoacetamide also takes place, the products being 1-cyano-6-hydroxy-6-methyl-4-methylene-8,9-diphenyl-3-azabicyclo[3.3.1]nonan-2-one and 3-cyano-6-methyl-3-(3-oxo-1-phenylbutyl)-4-phenyl-3,4-dihydropyridin-2(1H)-one. The latter compound cyclises in acid medium to form 6-acetyl-4-cyano-1-methyl-5,8-diphenyl-2-azabicyclo[2.2.2]octan-3-one. X-Ray crystal structures of the 3-azabicyclo[3.3.1]nonan-2-one and the 3-azabicyclo[2.2.2]octan-2-one derivatives are described.
Resumo:
Pure O-methyl N-methoxycarbonyl thiocarbamate CH(3)OC(S)N(H)C(O)OCH(3) (I) and O-ethyl N-methoxycarbonyl thiocarbamate, CH(3)CH(2)OC(S)N(H)C(O)OCH(3) (II), are quantitatively prepared by the addition reaction between the CH(3)OC(O)NCS and the corresponding alcohols. The compounds are characterized by multinuclear ((1)H and (13)C) and bi-dimensional ((13)C HSQC) NMR, GC-MS and FTIR spectroscopy techniques. Structural and conformational properties are analyzed using a combined approach involving crystallographic data, vibration spectra and theoretical calculations. The low-temperature (150 K) crystal structure of II was determined by X-ray diffraction methods. The substance crystallizes in the monoclinic space group P2(1)/n with a = 4.088(1)angstrom. b = 22.346(1)angstrom, c = 8.284(1)angstrom, beta = 100.687(3)degrees and Z = 4 molecules per unit cell. The conformation adopted by the thiocarbamate group -OC(S)N(H)- is syn (C=S double bond in synperiplanar orientation with respect to the N-H single bond), while the methoxycarbonyl C=O double bond is in antiperiplanar orientation with respect to the N-H bond. The non-H atoms in II are essentially coplanar and the molecules are arranged in the crystal lattice as centro-symmetric dimeric units held by N-H center dot center dot center dot S=C hydrogen bonds Id(N center dot center dot center dot S) = 3.387(1)angstrom, <(N-H center dot center dot center dot S) = 166.4(2)degrees]. Furthermore, the effect of the it electronic resonance in the structural and vibrational properties is also discussed. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The analysis of the IR carbonyl band of the N-methoxy-N-methyl-2-[(4`-substituted)phenyisulfonyI]propanamides Y-PhSO(2)CH(Me)C(O)N(OMe)Me (Y = OMe 1, Me 2, H 3, Cl 4, NO(2) 5), supported by HF/6-31G(d,p) calculations of 3,, indicated the existence of two gauche conformers (g(1) and g(2)), the g, conformer being the most stable and the least polar one (in gas phase and in solution). Both conformers are present in solution of the non polar solvent (CCl(4)) for 1-5 and in solution of the more polar solvents (CHCl(3)) for 1. 4, 5 and (CH(2)Cl(2)) for 5, while only the g(1) conformer is present in solution of the most polar solvent (CH(3)CN) for 1-5. The g, and g2 conformers correspond to the enantiomeric pairs of diastereomers (diast(1) and diast(2)) whose relative configurations are [C(3)(R)N(R)]/[C(3)(s)N(s)] and [C(3)(R)N(s)]/[C(3)(s)N(R)], respectively. The computed carbonyl frequencies for g(1) (diast(1)) and g(2) (diast(2)) stereoisomers of3 match well the experimental values. The NBO analysis, for 3 shows the important role of the orbital interactions in conformer stabilization and the overall balance of these interactions corroborates that the g, conformer is more stable than the 92 one. The observed abnormal solvent effect on the relative intensities of the carbonyl doublet components is attributed to the molecular crowding in the g2 conformer which hinders its solvation in comparison to the g, conformer (diast(1)). X-ray single crystal analysis performed for 3 shows the existence Of two 92, and g(1b) conformers of diastereomers (diast2, and diast(1b)) whose absolute configurations are [C(3)(R)N(s)] and [C(3)(R)N(R)], respectively. The larger population and. thus, the larger stabilization of the g(2), conformer over the gib form in the crystals may be associated with a larger energy gain deriving from dipole moment coupling in the former conformer along with a series of C-H center dot center dot center dot O electrostatic and hydrogen bond interactions, (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The analysis of the IR carbonyl band of the N-methoxy-N-methyl-2-[(4`-substituted)phenylthio]propanamides Y-PhSCH(Me)C(O)N(OMe)Me (Y=OMe 1, Me 2, H 3, Cl 4, NO(2) 5), supported by B3LYP/cc-pVDZ calculations of 3, indicated the existence of two gauche conformers (g(1) and g(2)), the g(1) conformer being the more stable and the less polar one (in gas phase and in solution). Both conformers are present in solution of the polar solvents (CH(2)Cl(2) and CH(3)CN) for 1-5 and in solution of the less polar solvent (CHCl(3)) for 1-4, while only the g(1) conformer is present in solution of non polar solvents (n-C(6)H(14) and CCl(4)) and in solution of CHCl(3) for 5. NBO analysis shows that both the sigma(C-S) -> pi*(C=O) (hyperconjugative) and the pi(C=O) -> sigma*(C-S) orbital interactions contribute almost to the same extent for the stabilization of g(1) and g(2) conformers. The pi*(C=O) -> sigma*(C-S), n(S) -> pi*(C=O) and the n(S) -> pi*(C=O) orbital interactions stabilize more the g(1) conformer than the g(2) one. Moreover, the suitable geometry of the g(1) conformer leads to its stabilization through the LP(O2) -> sigma*(C8-H11) orbital interaction (hydrogen bond) along with the strong O([CO])(delta-) center dot center dot center dot H([O-Ph])(delta+) electrostatic interaction. On the other hand, the appropriate geometry of the g(2) conformer leads to its stabilization by the LP(O22) -> sigma*(C9-H13) orbital interaction (hydrogen bond) along with the weak O([OMe])(delta-) center dot center dot center dot H([o`-Ph])(delta+) electrostatic static interaction. As for the 4`-nitro derivative 5 the ortho-phenyl hydrogen atom becomes more acidic, leading to a stronger O([CO])(delta-) center dot center dot center dot H([o-Ph])(delta+) interaction and, thus, into a larger stabilization of the g(1) conformer in the whole series. This trend is responsible for the unique IR carbonyl band in CHCl(3) solution of 5. The larger occupancy of the pi*(C=O) orbital of the g(1) conformer relative to that of the g(2) conformer, along with the O([CO])(delta-) center dot center dot center dot H([o-Ph])(delta+) electrostatic interaction (hydrogen bond) justifies the lower carbonyl frequency of the g(1) conformer with respect to the g(2) one, in gas phase and in solution. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The (1)H NMR spectra of N-methoxy-N-methyl-2-[(4`-substituted)phenylsulfinyl]-propanamides [Y-Ph-S(O)CH(Me)C(O)N(OMe)Me; Y = OMe 1, Me 2, H 3. Cl 4, NO(2) 5] along with the X-ray diffraction analysis of the nitro-derivative (5). have shown the existence of two pairs of diastereomers (racemic mixture) [C(R)S(S)/C(S)S(R) (diast(1)) and C(R)S(R)/C(S)S(S) (diast(2))] in the ratio of ca. 7:3. respectively. The v(CO) IR analysis of the title compounds supported by HF and B3LYP/6-31G** calculations of 3 and of the parent N-methoxy-N-methyl-propanamide (6) by HF, have shown that diast(1) exists in an equilibrium between the two more polar and more stable quasi-cis (q-c(1) and q-c(2)) conformers and the gauche(g) conformer. The population of the g conformer in the equilibrium increases with the increase in the solvent polarity, which is attributed to a larger solvation effect on the carbonyl and sulfinyl groups. Diast(2) of compound 3 occurs in the gas phase as an equilibrium between the most stable quasi-gauche (q-g) conformer and the quasi-cis (q-c) conformer, both presenting very similar dipole moments. The former is stabilized by electrostatic and charge transfer interactions, which results in a less solvated spatial arrangement. Moreover, all conformers of both diastereomers are stabilized by several intramolecular hydrogen bonds. X-ray single crystal analysis performed for diast(1) and for diast(2) of 5 indicates that both stereoisomers assume, in the solid state, the anti-clinal (gauche) conformation. For the crystal packing, diast(1) of 5 is made up of three molecules joined through two centro-symmetric H center dot center dot center dot O hydrogen bonds. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
4-Methylpyrimidine-2-thione reacts with methylmercury hydroxide to give the thiolate derivative HgMe(SC4H2N2Me-2), the X-ray structure of which reveals pairs of molecules with a mercury-mercury distance of 3.10 Å.
Resumo:
We report the analysis of the SI So rotational band contours of jet-cooled 5-methyl-2-hydroxypyrimidine (5M2HP), the enol form of deoxythymine. Unlike thymine, which exhibits a structureless spectrum, the vibronic spectrum of 5M2HP is well structured, allowing us to determine the rotational constants and the methyl group torsional barriers in the S-0 and S-1 states. The 0(0)(0), 6a(0)(1), 6b(0)(1), and 14(0)(1) band contours were measured at 900 MHz (0.03 cm(-1)) resolution using mass-specific two-color resonant two-photon ionization (2C-R2PI) spectroscopy. All four bands are polarized perpendicular to the pyrimidine plane (>90% c type), identifying the S-1 <- S-0 excitation of 5M2HP as a 1n pi* transition. All contours exhibit two methyl rotor subbands that arise from the lowest 5-methyl torsional states 0A '' and 1E ''. The S-0 and S-1 state torsional barriers were extracted from fits to the torsional subbands. The 3-fold barriers are V-3 '' = 13 cm(-1) and V3' = SI cm(-1); the 6-fold barrier contributions V-6 '' and V-6' are in the range of 2-3 cm(-1) and are positive in both states. The changes of A, B, and C rotational constants upon S-1 <- S-0 excitation were extracted from the contours and reflect an "anti-quinoidal" distortion. The 0(0)(0) contour can only be simulated if a 3 GHz Lorentzian line shape is included, which implies that the S-1(1n pi*) lifetime is similar to 55 ps. For the 6a(0)(1) and 6b(0)(1) bands, the Lorentzian component increases to 5.5 GHz, reflecting a lifetime decrease to similar to 30 ps. The short lifetimes are consistent with the absence of fluorescence from the 1n pi* state. Combining these measurements with the previous observation of efficient intersystem crossing (ISC) from the Si state to a long-lived T-1((3)n pi*) state that lies similar to 2200 cm(-1) below [S. Lobsiger, S. et al. Phys. Chem. Chem. Phys. 2010, 12, 5032] implies that the broadening arises from fast intersystem crossing with k(ISC) approximate to 2 x 10(10) s(-1). In comparison to 5-methylpyrimidine, the ISC rate is enhanced by at least 10 000 by the additional hydroxy group in position 2.
Resumo:
he UV spectrum of the adenine analogue 9-methyl-2-aminopurine (9M-2AP) is investigated with one- and two-color resonant two-photon ionization spectroscopy at 0.3 and 0.05 cm−1 resolution in a supersonic jet. The electronic origin at 32 252 cm−1 exhibits methyl torsional subbands that originate from the 0A′′1 (l = 0) and 1E ″ (l = ±1) torsional levels. These and further torsional bands that appear up to 000+230 cm−1 allow to fit the threefold (V 3) barriers of the torsional potentials as ∣∣V′′3∣∣=50 cm−1 in the S 0 and ∣∣V′3∣∣=126 cm−1 in the S 1 state. Using the B3LYP density functional and correlated approximate second-order coupled cluster CC2 methods, the methyl orientation is calculated to be symmetric relative to the 2AP plane in both states, with barriers of V′′3=20 cm−1 and V′3=115 cm−1. The 000 rotational band contour is 75% in-plane (a/b) polarized, characteristic for a dominantly long-axis 1ππ* excitation. The residual 25% c-axis polarization may indicate coupling of the 1ππ* to the close-lying 1 nπ* state, calculated at 4.00 and 4.01 eV with the CC2 method. However, the CC2 calculated 1 nπ oscillator strength is only 6% of that of the 1ππ* transition. The 1ππ* vibronic spectrum is very complex, showing about 40 bands within the lowest 500 cm−1. The methyl torsion and the low-frequency out-of-plane ν′1 and ν′2 vibrations are strongly coupled in the 1ππ* state. This gives rise to many torsion-vibration combination bands built on out-of-plane fundamentals, which are without precedence in the 1ππ* spectrum of 9H-2-aminopurine [S. Lobsiger, R. K. Sinha, M. Trachsel, and S. Leutwyler, J. Chem. Phys.134, 114307 (2011)]. From the Lorentzian broadening needed to fit the 000 contour of 9M-2AP, the 1ππ* lifetime is τ ⩾ 120 ps, reflecting a rapid nonradiative transition.
Resumo:
The rearrangement of methyl 2-(methylthio)benzenesulfonate (1) to the zwitterionic 2-(dimethyl-sulfonium)benzenesulfonate (2) is known to proceed in solution by intermolecular Me transfers. The same rearrangement has been observed to occur in crystalline 1, but the crystal structure shows that the molecular packing is not conducive to intermolecular Me transfer. The reaction has been carried out with mixed crystals composed of 1 and deuteriomethylated (D6)-l. By fast-atom-bombardment mass spectroscopy, it has been shown that the product consists of a 1:2:1 mixture of the non-, tri-, and hexadeuterated species, the mixture expected, if the solid-state reaction proceeds by intermolecular Me transfers. From this result, together with the slower rates of conversion in the single crystal compared with the melt, it can be concluded that the reaction must occur not topochemically but rather at defects such as microcavities, surfaces, and other irregularities in the ordered crystal arrangement.