985 resultados para 291602 Memory Structures


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Behavior, neuropsychology, and neuroimaging suggest that episodic memories are constructed from interactions among the following basic systems: vision, audition, olfaction, other senses, spatial imagery, language, emotion, narrative, motor output, explicit memory, and search and retrieval. Each system has its own well-documented functions, neural substrates, processes, structures, and kinds of schemata. However, the systems have not been considered as interacting components of episodic memory, as is proposed here. Autobiographical memory and oral traditions are used to demonstrate the usefulness of the basic-systems model in accounting for existing data and predicting novel findings, and to argue that the model, or one similar to it, is the only way to understand episodic memory for complex stimuli routinely encountered outside the laboratory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Functional connectivity magnetic resonance imaging technique has revealed the importance of distributed network structures in higher cognitive processes in the human brain. The hippocampus has a key role in a distributed network supporting memory encoding and retrieval. Hippocampal dysfunction is a recurrent finding in memory disorders of aging such as amnestic mild cognitive impairment (aMCI) in which learning- and memory-related cognitive abilities are the predominant impairment. The functional connectivity method provides a novel approach in our attempts to better understand the changes occurring in this structure in aMCI patients. METHODS: Functional connectivity analysis was used to examine episodic memory retrieval networks in vivo in twenty 28 aMCI patients and 23 well-matched control subjects, specifically between the hippocampal structures and other brain regions. RESULTS: Compared with control subjects, aMCI patients showed significantly lower hippocampus functional connectivity in a network involving prefrontal lobe, temporal lobe, parietal lobe, and cerebellum, and higher functional connectivity to more diffuse areas of the brain than normal aging control subjects. In addition, those regions associated with increased functional connectivity with the hippocampus demonstrated a significantly negative correlation to episodic memory performance. CONCLUSIONS: aMCI patients displayed altered patterns of functional connectivity during memory retrieval. The degree of this disturbance appears to be related to level of impairment of processes involved in memory function. Because aMCI is a putative prodromal syndrome to Alzheimer's disease (AD), these early changes in functional connectivity involving the hippocampus may yield important new data to predict whether a patient will eventually develop AD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Drawing on the theoretical insights of Paul Ricoeur this paper investigates the geographies of public remembrance in a post-conflict society. In Northern Ireland, where political divisions have found expression through acts of extreme violence over the past 30 years, questions of memory and an amnesty for forgetting have particular resonance both at the individual and societal level, and render Ricoeur’s framework particularly prescient. Since the signing of the Belfast Agreement in 1998, initiating the Peace Process through consociational structures, discovering a nomenclature and set of practices which would aid in the rapprochement of a deeply divided society has presented a complex array of issues. In this paper I examine the various practices of public remembrance of the 1998 bombing of Omagh as a means of understanding how memory-spaces evolve in a post-conflict context. In Omagh there were a variety of commemorative practices instituted and each, in turn, adopted a different contour towards achieving reconciliation with the violence and grief of the bombing. In particular the Garden of Light project is analysed as a collective monument which, with light as its metaphysical centre, invited the populace to reflect backward on the pain of the bombing while at the same time enabling the society to look forward toward a peaceful future where a politics of hope might eclipse a politics of despair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present DRASync, a region-based allocator that implements a global address space abstraction for MPI programs with pointer-based data structures. The main features of DRASync are: (a) it amortizes communication among nodes to allow efficient parallel allocation in a global address space; (b) it takes advantage of bulk deallocation and good locality with pointer-based data structures; (c) it supports ownership semantics of regions by nodes akin to reader–writer locks, which makes for a high-level, intuitive synchronization tool in MPI programs, without sacrificing message-passing performance. We evaluate DRASync against a state-of-the-art distributed allocator and find that it produces comparable performance while offering a higher-level abstraction to programmers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is about the combination of functional ferroelectric oxides with Multiwall Carbon Nanotubes for microelectronic applications, as for example potential 3 Dimensional (3D) Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Miniaturized electronics are ubiquitous now. The drive to downsize electronics has been spurred by needs of more performance into smaller packages at lower costs. But the trend of electronics miniaturization challenges board assembly materials, processes, and reliability. Semiconductor device and integrated circuit technology, coupled with its associated electronic packaging, forms the backbone of high-performance miniaturized electronic systems. However, as size decreases and functionalization increases in the modern electronics further size reduction is getting difficult; below a size limit the signal reliability and device performance deteriorate. Hence miniaturization of siliconbased electronics has limitations. On this background the Road Map for Semiconductor Industry (ITRS) suggests since 2011 alternative technologies, designated as More than Moore; being one of them based on carbon (carbon nanotubes (CNTs) and graphene) [1]. CNTs with their unique performance and three dimensionality at the nano-scale have been regarded as promising elements for miniaturized electronics [2]. CNTs are tubular in geometry and possess a unique set of properties, including ballistic electron transportation and a huge current caring capacity, which make them of great interest for future microelectronics [2]. Indeed CNTs might have a key role in the miniaturization of Non Volatile Ferroelectric Random Access Memories (NVFeRAM). Moving from a traditional two dimensional (2D) design (as is the case of thin films) to a 3D structure (based on a tridimensional arrangement of unidimensional structures) will result in the high reliability and sensing of the signals due to the large contribution from the bottom electrode. One way to achieve this 3D design is by using CNTs. Ferroelectrics (FE) are spontaneously polarized and can have high dielectric constants and interesting pyroelectric, piezoelectric, and electrooptic properties, being a key application of FE electronic memories. However, combining CNTs with FE functional oxides is challenging. It starts with materials compatibility, since crystallization temperature of FE and oxidation temperature of CNTs may overlap. In this case low temperature processing of FE is fundamental. Within this context in this work a systematic study on the fabrication of CNTs - FE structures using low cost low temperature methods was carried out. The FE under study are comprised of lead zirconate titanate (Pb1-xZrxTiO3, PZT), barium titanate (BaTiO3, BT) and bismuth ferrite (BiFeO3, BFO). The various aspects related to the fabrication, such as effect on thermal stability of MWCNTs, FE phase formation in presence of MWCNTs and interfaces between the CNTs/FE are addressed in this work. The ferroelectric response locally measured by Piezoresponse Force Microscopy (PFM) clearly evidenced that even at low processing temperatures FE on CNTs retain its ferroelectric nature. The work started by verifying the thermal decomposition behavior under different conditions of the multiwall CNTs (MWCNTs) used in this work. It was verified that purified MWCNTs are stable up to 420 ºC in air, as no weight loss occurs under non isothermal conditions, but morphology changes were observed for isothermal conditions at 400 ºC by Raman spectroscopy and Transmission Electron Microscopy (TEM). In oxygen-rich atmosphere MWCNTs started to oxidized at 200 ºC. However in argon-rich one and under a high heating rate MWCNTs remain stable up to 1300 ºC with a minimum sublimation. The activation energy for the decomposition of MWCNTs in air was calculated to lie between 80 and 108 kJ/mol. These results are relevant for the fabrication of MWCNTs – FE structures. Indeed we demonstrate that PZT can be deposited by sol gel at low temperatures on MWCNTs. And particularly interesting we prove that MWCNTs decrease the temperature and time for formation of PZT by ~100 ºC commensurate with a decrease in activation energy from 68±15 kJ/mol to 27±2 kJ/mol. As a consequence, monophasic PZT was obtained at 575 ºC for MWCNTs - PZT whereas for pure PZT traces of pyrochlore were still present at 650 ºC, where PZT phase formed due to homogeneous nucleation. The piezoelectric nature of MWCNTs - PZT synthesised at 500 ºC for 1 h was proved by PFM. In the continuation of this work we developed a low cost methodology of coating MWCNTs using a hybrid sol-gel / hydrothermal method. In this case the FE used as a proof of concept was BT. BT is a well-known lead free perovskite used in many microelectronic applications. However, synthesis by solid state reaction is typically performed around 1100 to 1300 ºC what jeopardizes the combination with MWCNTs. We also illustrate the ineffectiveness of conventional hydrothermal synthesis in this process due the formation of carbonates, namely BaCO3. The grown MWCNTs - BT structures are ferroelectric and exhibit an electromechanical response (15 pm/V). These results have broad implications since this strategy can also be extended to other compounds of materials with high crystallization temperatures. In addition the coverage of MWCNTs with FE can be optimized, in this case with non covalent functionalization of the tubes, namely with sodium dodecyl sulfate (SDS). MWCNTs were used as templates to grow, in this case single phase multiferroic BFO nanorods. This work shows that the use of nitric solvent results in severe damages of the MWCNTs layers that results in the early oxidation of the tubes during the annealing treatment. It was also observed that the use of nitric solvent results in the partial filling of MWCNTs with BFO due to the low surface tension (<119 mN/m) of the nitric solution. The opening of the caps and filling of the tubes occurs simultaneously during the refluxing step. Furthermore we verified that MWCNTs have a critical role in the fabrication of monophasic BFO; i.e. the oxidation of CNTs during the annealing process causes an oxygen deficient atmosphere that restrains the formation of Bi2O3 and monophasic BFO can be obtained. The morphology of the obtained BFO nano structures indicates that MWCNTs act as template to grow 1D structure of BFO. Magnetic measurements on these BFO nanostructures revealed a week ferromagnetic hysteresis loop with a coercive field of 956 Oe at 5 K. We also exploited the possible use of vertically-aligned multiwall carbon nanotubes (VA-MWCNTs) as bottom electrodes for microelectronics, for example for memory applications. As a proof of concept BiFeO3 (BFO) films were in-situ deposited on the surface of VA-MWCNTs by RF (Radio Frequency) magnetron sputtering. For in situ deposition temperature of 400 ºC and deposition time up to 2 h, BFO films cover the VA-MWCNTs and no damage occurs either in the film or MWCNTs. In spite of the macroscopic lossy polarization behaviour, the ferroelectric nature, domain structure and switching of these conformal BFO films was verified by PFM. A week ferromagnetic ordering loop was proved for BFO films on VA-MWCNTs having a coercive field of 700 Oe. Our systematic work is a significant step forward in the development of 3D memory cells; it clearly demonstrates that CNTs can be combined with FE oxides and can be used, for example, as the next 3D generation of FERAMs, not excluding however other different applications in microelectronics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

La schizophrénie est une psychopathologie largement hétérogène caractérisée entre autres par d’importantes défaillances dans le fonctionnement cognitif et émotionnel. En effet, par rapport à la population générale, forte proportion de ces individus présentent une mémoire déficitaire pour les événements émotionnels. À ce jour, le peu d’études qui se sont penchées sur la mémoire émotionnelle épisodique dans la schizophrénie, ont uniquement mis l’emphase sur l'effet de la valence des stimuli (c’est-à-dire le caractère agréable ou désagréable du stimulus). Toutefois, aucune n’a investigué spécifiquement l’intensité de la réaction aux stimuli (c’est-à-dire une faible par rapport à une forte réaction) malgré quantité de preuves faisant montre, dans la population générale, de différents processus de mémoire émotionnelle pour des stimuli suscitant une forte réaction par rapport à ceux évoquant une faible réponse. Ce manque est d’autant plus flagrant étant donné le nombre d’études ayant rapporté un traitement et un encodage atypiques des émotions spécifiquement au niveau de l’intensité de la réponse subjective chez des patients atteints de schizophrénie. Autre fait important, il est étonnant de constater l’absence de recherches sur les différences de sexe dans la mémoire émotionnelle étant donné l’ensemble des divergences entre hommes et femmes atteints de schizophrénie au niveau de la prévalence, de l’âge de diagnostic, de la manifestation clinique, de l’évolution de la maladie, de la réponse au traitement et des structures cérébrales. Pour pallier à ces lacunes, ce mémoire a évalué : (1) l’effet de la valence des stimuli et de l'intensité de la réaction émotionnelle au niveau des fonctions cérébrales correspondant à la mémoire émotionnelle chez des patients atteints de schizophrénie comparativement à des participants sains; et (2) les possibles différences de sexe dans les processus cérébraux impliqués dans la mémoire émotionnelle chez des patients atteints de schizophrénie par rapport à des volontaires sains. Ainsi, la première étude a comparé les activations cérébrales de patients atteints de schizophrénie par rapport à des participants sains au cours d’une tâche de mémoire émotionnelle dont les stimuli variaient à la fois au niveau de la valence et de l'intensité de la réaction subjective. 37 patients atteints de schizophrénie ainsi que 37 participants en bonne santé ont effectué cette tâche de mémoire émotionnelle lors d’une session d’imagerie par résonance magnétique fonctionnelle (IRMf). Pour toutes les conditions étudiées (images négatives, positives, de faible et de forte intensité), le groupe atteint de schizophrénie a performé significativement moins bien que les volontaires sains. Comparativement aux sujets sains, ils ont montré moins d’activations cérébrales dans les régions limbiques et préfrontales lors de la reconnaissance des images négatives, mais ont présenté un patron d'activations similaire à celui des participants sains lors de la reconnaissance des images chargées positivement (activations observées dans le cervelet, le cortex temporal et préfrontal). Enfin, indépendamment de la valence des stimuli, les deux groupes ont démontré une augmentation des activations cérébrales pour les images de forte intensité par rapport à celles de plus faible intensité. La seconde étude a quant à elle exploré les différences de sexe potentielles au niveau des activations cérébrales associées à la mémoire émotionnelle dans la schizophrénie et dans la population en général. Nous avons comparé 41 patients atteints de schizophrénie (20 femmes) à 41 participants en bonne santé (19 femmes) alors qu’ils effectuaient la même tâche de mémoire émotionnelle mentionnée plus haut. Or, pour cette étude, nous nous sommes concentrés sur les conditions suivantes : la reconnaissance d’images positives, négatives et neutres. Nous n'avons pas observé de différences entre les hommes et les femmes au niveau des performances à la tâche de mémoire pour aucune des conditions. En ce qui a trait aux données de neuroimagerie, comparativement aux femmes en bonne santé, celles atteintes de schizophrénie ont montré une diminution des activations cérébrales dans les régions corticales du système limbique (p. ex. cortex cingulaire moyen) et dans les régions sous-corticales (p. ex. amygdale) lors de la reconnaissance d'images négatives. Pour ce qui est de la condition positive, elles ont présenté, comparativement au groupe de femmes saines, des diminutions d’activations spécifiquement dans le cervelet ainsi que dans le gyrus frontal inférieur et moyen. Les hommes atteints de schizophrénie, eux, ont montré une augmentation d’activations par rapport aux hommes sains dans le gyrus préfrontal médian lors de la reconnaissance des stimuli négatifs ; ainsi que dans les régions pariétales, temporales et limbiques lors de la reconnaissance des stimuli positifs. Dans un autre ordre d’idées, notre analyse corrélationnelle a mis en évidence, chez les femmes, un lien significatif entre l’activité cérébrale et les symptômes au cours de la mémoire des stimuli positifs, alors que chez les hommes atteints schizophrénie, ce lien a été observé au cours de la mémoire des stimuli négatifs. Bref, l’ensemble de nos résultats suggère, chez les patients atteints de schizophrénie, un fonctionnement cérébral atypique spécifiquement lors de la reconnaissance d’images négatives, mais un fonctionnement intact lors de la reconnaissance de stimuli positifs. De plus, nous avons mis en évidence la présence de différences de sexe dans les activations cérébrales associées à la mémoire épisodique émotionnelle soulignant ainsi l'importance d’étudier séparément les hommes et les femmes atteints de schizophrénie dans le cadre de recherches sur les plans cognitif et émotionnel.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myoglobin has been studied in considerable detail using different experimental and computational techniques over the past decades. Recent developments in time-resolved spectroscopy have provided experimental data amenable to detailed atomistic simulations. The main theme of the present review are results on the structures, energetics and dynamics of ligands ( CO, NO) interacting with myoglobin from computer simulations. Modern computational methods including free energy simulations, mixed quantum mechanics/molecular mechanics simulations, and reactive molecular dynamics simulations provide insight into the dynamics of ligand dynamics in confined spaces complementary to experiment. Application of these methods to calculate and understand experimental observations for myoglobin interacting with CO and NO are presented and discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is intense interest in the studies related to the potential of phytochemical-rich foods to prevent age-related neurodegeneration and cognitive decline. Recent evidence has indicated that a group of plant-derived compounds known as flavonoids may exert particularly powerful actions on mammalian cognition and may reverse age-related declines in memory and learning. In particular, evidence suggests that foods rich in three specific flavonoid sub-groups, the flavanols, anthocyanins and/or flavanones, possess the greatest potential to act on the cognitive processes. This review will highlight the evidence for the actions of such flavonoids, found most commonly in fruits, such as apples, berries and citrus, on cognitive behaviour and the underlying cellular architecture. Although the precise mechanisms by which these flavonoids act within the brain remain unresolved, the present review focuses on their ability to protect vulnerable neurons and enhance the function of existing neuronal structures, two processes known to be influenced by flavonoids and also known to underpin neuro-cognitive function. Most notably, we discuss their selective interactions with protein kinase and lipid kinase signalling cascades (i.e. phosphoinositide-3 kinase/Akt and mitogen-activated protein kinase pathways), which regulate transcription factors and gene expression involved in both synaptic plasticity and cerebrovascular blood flow. Overall, the review attempts to provide an initial insight into the potential impact of regular flavonoid-rich fruit consumption on normal or abnormal deteriorations in cognitive performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dorsal striatum (DS) is involved in various forms of learning and memory such as procedural learning, habit learning, reward-association and emotional learning. We have previously reported that bilateral DS lesions disrupt tone fear conditioning (TFC), but not contextual fear conditioning (CFC) [Ferreira TL, Moreira KM, Ikeda DC, Bueno OFA, Oliveira MGM (2003) Effects of dorsal striatum lesions in tone fear conditioning and contextual fear conditioning. Brain Res 987:17-24]. To further elucidate the participation of DS in emotional learning, in the present study, we investigated the effects of bilateral pretest (postraining) electrolytic DS lesions on TFC. Given the well-acknowledged role of the amygdala in emotional learning, we also examined a possible cooperation between DS and the amygdala in TFC, by using asymmetrical electrolytic lesions, consisting of a unilateral lesion of the central amygdaloid nucleus (CeA) combined to a contralateral DS lesion. The results show that pre-test bilateral DS lesions disrupt TFC responses, suggesting that DS plays a role in the expression of TFC. More importantly, rats with asymmetrical pre-training lesions were impaired in TFC, but not in CFC tasks. This result was confirmed with muscimol asymmetrical microinjections in DS and CeA, which reversibly inactivate these structures. On the other hand, similar pretest lesions as well as unilateral electrolytic lesions of CeA and DS in the same hemisphere did not affect TFC. Possible anatomical substrates underlying the observed effects are proposed. Overall, the present results underscore that other routes, aside from the well-established CeA projections to the periaqueductal gray, may contribute to the acquisition/consolidation of the freezing response associated to a TFC task. It is suggested that CeA may presumably influence DS processing via a synaptic relay on dopaminergic neurons of the substantia nigra compacta and retrorubral nucleus. The present observations are also in line with other studies showing that TFC and CFC responses are mediated by different anatomical networks. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bolted joints are a form of mechanical coupling largely used in machinery due to their reliability and low cost. Failure of bolted joints can lead to catastrophic events, such as leaking, train derailments, aircraft crashes, etc. Most of these failures occur due to the reduction of the pre-load, induced by mechanical vibration or human errors in the assembly or maintenance process. This article investigates the application of shape memory alloy (SMA) washers as an actuator to increase the pre-load on loosened bolted joints. The application of SMA washer follows a structural health monitoring procedure to identify a damage (reduction in pre-load) occurrence. In this article, a thermo-mechanical model is presented to predict the final pre-load achieved using this kind of actuator, based on the heat input and SMA washer dimension. This model extends and improves on the previous model of Ghorashi and Inman [2004, "Shape Memory Alloy in Tension and Compression and its Application as Clamping Force Actuator in a Bolted Joint: Part 2 - Modeling," J. Intell. Mater. Syst. Struct., 15:589-600], by eliminating the pre-load term related to nut turning making the system more practical. This complete model is a powerful but complex tool to be used by designers. A novel modeling approach for self-healing bolted joints based on curve fitting of experimental data is presented. The article concludes with an experimental application that leads to a change in joint assembly to increase the system reliability, by removing the ceramic washer component. Further research topics are also suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphing aircraft have the ability to actively adapt and change their shape to achieve different missions efficiently. The development of morphing structures is deeply related with the ability to model precisely different designs in order to evaluate its characteristics. This paper addresses the dynamic modeling of a sectioned wing profile (morphing airfoil) connected by rotational joints (hinges). In this proposal, a pair of shape memory alloy (SMA) wires are connected to subsequent sections providing torque by reducing its length (changing airfoil camber). The dynamic model of the structure is presented for one pair of sections considering the system with one degree of freedom. The motion equations are solved using numerical techniques due the nonlinearities of the model. The numerical results are compared with experimental data and a discussion of how good this approach captures the physical phenomena associated with this problem. © The Society for Experimental Mechanics, Inc. 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glucose metabolism and insulin signaling disruptions in the brain have been proposed as a likely etiology of Alzheimer's disease. The aim of the present study was to investigate the time course of cognitive impairments induced by intracerebroventricular injection of streptozotocin (STZ) in rats and correlate them with the ensuing neurodegenerative process. Early and late effects of STZ were evaluated by using the reference and working memory versions of the Morris' water maze task and the evaluation of neurodegenerative markers by immunoblotting and the Fluoro-jade C histochemistry. The results revealed different types of behavioral and neurodegenerative responses, with distinct time courses. We observed an early disruption on the working memory as early as 3 h after STZ injections, which was followed by degenerative processes in the hippocampus at 1 and 15 days after STZ injections. Memory disruption increases over time and culminates with significant changes in amyloid-beta peptide and hyperphosphorylated Tau protein levels in distinct brain structures. These findings add information on the Alzheimer's disease-like STZ animal model and on the mechanisms underlying neurodegenerative processes. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’idea di base della seguente tesi, finora mai applicata o descritta in letteratura scientifica in base alle ricerche effettuate, è stata quella di creare un sistema di monitoraggio strutturale intelligente (Structural Health Monitoring, SHM) mediante dei sensori di deformazione a reticolo di Bragg (Fiber Bragg Grating, FBG), incollati su fili a memoria di forma inseriti a loro volta, bloccati con opportuni ancoraggi esterni, in sei travi di betoncino cementizio armato. L’obbiettivo della sperimentazione è stato quindi quello di creare delle travi intelligenti che, in condizioni di carico eccezionali e critiche (monitorate dal sensore a fibra ottica), sapessero “autoripararsi” mediante gli attuatori a memoria di forma con un processo di riscaldamento appositamente progettato.