953 resultados para 290802 Water and Sanitary Engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basic experiments were conducted in a near full-scale broad-crested weir. Detailed velocity and pressure measurements were performed for two configurations. The results showed the rapid flow distribution at the upstream end of the weir, while an overhanging crest design may affect the flow field. The study showed further that large vortical structures might be observed immediately upstream of the weir and impact adversely on the overflow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal Photograph by Hubert Chanson This photograph of standing wave bed forms was taken at very low tide. The tidal range was 10 m. The bed forms were located on the island of Le Verdelet, in a channel between Le Grande Jaune and Le Verdelet. It is likely that these standing wave bed forms were formed during transcritical shallow water flows at the end of ebb tide. The author’s watch is in the foreground for scale. (Coastal Photograph by Hubert Chanson, Division of Civil Engineering, the University of Queensland, Brisbane, Queensland 4072, Australia.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rectangular dropshafts, commonly used in sewers and storm water systems, are characterised by significant flow aeration. New detailed air-water flow measurements were conducted in a near-full-scale dropshaft at large discharges. In the shaft pool and outflow channel, the results demonstrated the complexity of different competitive air entrainment mechanisms. Bubble size measurements showed a broad range of entrained bubble sizes. Analysis of streamwise distributions of bubbles suggested further some clustering process in the bubbly flow although, in the outflow channel, bubble chords were in average smaller than in the shaft pool. A robust hydrophone was tested to measure bubble acoustic spectra and to assess its field application potential. The acoustic results characterised accurately the order of magnitude of entrained bubble sizes, but the transformation from acoustic frequencies to bubble radii did not predict correctly the probability distribution functions of bubble sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The "Pointe Saint Mathieu" is one of the most westerly continental landmarks of France. The promontory is located at the entrance of the "Goulet de la Rade de Brest", that is the entrance channel of the harbour of Brest in Brittany (France). It marks also the Southern end of the "Chenal du Four" that is the main navigation channel between the islands of Ouessant, Molène and Béniquet, and Brittany. The "Chenal du Four" is reputed for its dangers. The tidal range is greater than 7 m in spring tides, and the mid-tide current may exceed 5 knots. The Saint Mathieu promontory is equipped with a lighthouse and a semaphore. The former is located in the ruins of an old monastery, founded during the 6th century AD by Saint Tanguy. The present ruins are the remnants of buildings from the 11th to 15th centuries. The first lighthouse was installed in 1689, although the monks of the monastery used to maintain a signal light since the 1250s. Completed in 1835, the present "Phare de la Pointe Saint-Mathieu" is 37 m high and it reaches 58.8 m above sea level During World War 2, the Pointe Saint Mathieu was defended by a series of concrete fortifications built by the Germans. Some were based upon some earlier French bunker systems, like the coastal battery at the Rospects which included 4 main gun bunkers (4*150 mm, or 2*150 mm & 2*105 mm), an observation bunker on the Western side close to sea, and several smaller structures. There was also the large Kéringar Blockhaus system, near Lochrist, located about 1 km inland and designed for 4 guns of 280 mm. Its command bunker remains a landmark along the main road. All this area was very-heavily bombed between 1943 and 1944, and particularly during the battle of Brest in August-September 1944 ("L'Enfer de Brest").

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In an open channel, a hydraulic jump is the rapid transition from super- to sub-critical flow associated with strong turbulence and air bubble entrainment in the mixing layer. New experiments were performed at relatively large Reynolds numbers using phase-detection probes. Some new signal analysis provided characteristic air-water time and length scales of the vortical structures advecting the air bubbles in the developing shear flow. An analysis of the longitudinal air-water flow structure suggested little bubble clustering in the mixing layer, although an interparticle arrival time analysis showed some preferential bubble clustering for small bubbles with chord times below 3 ms. Correlation analyses yielded longitudinal air-water time scales Txx*V1/d1 of about 0.8 in average. The transverse integral length scale Z/d1 of the eddies advecting entrained bubbles was typically between 0.25 and 0.4, irrespective of the inflow conditions within the range of the investigations. Overall the findings highlighted the complicated nature of the air-water flow

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coastal photograph of Sillon du Talbert, L'Armor, Pleubian on 16 April 2004 low tide. End of the Sillon, looking N-N-E at the Archipel d'Ollone. The Sillon du Talbert is a natural thin 3-km long tongue made of "galets" (pebbles about 5 to 20 cm) and sand. It is located at the tip of a peninsula between the estuaries of the rivers Jaudy (Le Jaudy) and Trieux (Le Trieux) next to Ile de Bre´hat. At the end of the Sillon, there is an archipel of small islands and rocks called "Archipel d'Ollone" (Ollone archipel), also called the Talbert islands (Iles de Talbert) by the locals. The Sillon du Talbert (or Sillon de Talbert) is an important reserve of flora and fauna. The Sillon was damaged by locals using stones for construction until 1928, and by the Germans, who used stones for the Ile Blanche bunker system construction in 1943 as part of the WWII Atlantic wall. (Coastal Photograph by Hubert Chanson, Department of Civil Engineering, the University of Queensland, Brisbane, Queensland 4072, Australia.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aber Wrac’h, Pays du Léon, Bretagne. Aber Wrac’h, Bretagne, France, on 10 March 2004 at 13:30 (low tide) looking North (downstream) towards the Aber mouth and open sea between Lannilis and Plougerneau, Pays des Abers, Pays du Le´on. The word "Aber" is Britton (Breton) for a "fjord"-like estuary. Located on the Channel, the region "Pays des Abers" includes several deep incisions in the coastlines. The best known ‘‘Abers’’ are the Aber Wrac’h and Aber Benoit in the Pays du Léon, Finistere Nord.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In natural estuaries, contaminant transport is driven by the turbulent momentum mixing. The predictions of scalar dispersion can rarely be predicted accurately because of a lack of fundamental understanding of the turbulence structure in estuaries. Herein detailed turbulence field measurements were conducted at high frequency and continuously for up to 50 hours per investigation in a small subtropical estuary with semi-diurnal tides. Acoustic Doppler velocimetry was deemed the most appropriate measurement technique for such small estuarine systems with shallow water depths (less than 0.5 m at low tides), and a thorough post-processing technique was applied. The estuarine flow is always a fluctuating process. The bulk flow parameters fluctuated with periods comparable to tidal cycles and other large-scale processes. But turbulence properties depended upon the instantaneous local flow properties. They were little affected by the flow history, but their structure and temporal variability were influenced by a variety of mechanisms. This resulted in behaviour which deviated from that for equilibrium turbulent boundary layer induced by velocity shear only. A striking feature of the data sets is the large fluctuations in all turbulence characteristics during the tidal cycle. This feature was rarely documented, but an important difference between the data sets used in this study from earlier reported measurements is that the present data were collected continuously at high frequency during relatively long periods. The findings bring new lights in the fluctuating nature of momentum exchange coefficients and integral time and length scales. These turbulent properties should not be assumed constant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Durante las últimas tres décadas el interés y diversidad en el uso de canales escalonados han aumentado debido al desarrollo de nuevas técnicas y materiales que permiten su construcción de manera rápida y económica (Concreto compactado con rodillo CCR, Gaviones, etc.). Actualmente, los canales escalonados se usan como vertedores y/o canales para peces en presas y diques, como disipadores de energía en canales y ríos, o como aireadores en plantas de tratamiento y torrentes contaminados. Diversos investigadores han estudiado el flujo en vertedores escalonados, enfocándose en estructuras de gran pendiente (  45o) por lo que a la fecha, el comportamiento del flujo sobre vertedores con pendientes moderadas (  15 a 30o) no ha sido totalmente comprendido. El presente artículo comprende un estudio experimental de las propiedades físicas del flujo aire-agua sobre canales escalonados con pendientes moderadas, típicas en presas de materiales sueltos. Un extenso rango de gastos en condiciones de flujo rasante se investigó en dos modelos experimentales a gran escala (Le = 3 a 6): Un canal con pendiente 3.5H:1V (  16o) y dos alturas de escalón distintas (h = 0.1 y 0.05 m) y un canal con pendiente 2.5H:1V (  22o) y una altura de escalón de h = 0.1 m. Los resultados incluyen un análisis detallado de las propiedades del flujo en vertedores escalonados con pendientes moderadas y un nuevo criterio de diseño hidráulico, el cual está basado en los resultados experimentales obtenidos. English abstract: Stepped chutes have been used as hydraulic structures since antiquity, they can be found acting as spillways and fish ladders in dams and weirs, as energy dissipators in artificial channels, gutters and rivers, and as aeration enhancers in water treatment plants and polluted streams. In recent years, new construction techniques and materials (Roller Compacted Concrete RCC, rip-rap gabions, etc.) together with the development of the abovementioned new applications have allowed cheaper construction methods, increasing the interest in stepped chute design. During the last three decades, research in stepped spillways has been very active. However, studies prior to 1993 neglected the effect of free-surface aeration. A number of studies have focused since on steep stepped chutes (  45o) but the hydraulic performance of moderate-slope stepped channels is not yet totally understood. This study details an experimental investigation of physical air-water flow properties down moderate slope stepped spillways conducted in two laboratory models: the first model was a 3.15 m long stepped chute with a 15.9o slope comprising two interchangeable step heights (h = 0.1 m and h = 0.05 m); the second model was a 3.3 m long, stepped channel with a 21.8o slope (h = 0.1 m). A broad range of discharges within transition and skimming flow regimes was investigated. Measurements were conducted using a double tip conductivity probe. The study provides new, original insights into air-water stepped chute flows not foreseen in prior studies and presents a new design criterion for chutes with moderate slopes based on the experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution measurements of velocity and physio-chemistry were conducted before, during and after the passage of a transient front in a small subtropical system about 2.1 km upstream of the river mouth. Detailed acoustic Doppler velocimetry measurements, conducted continuously at 25 Hz, showed the existence of transverse turbulent shear between 300 s prior to the front passage and 1300 s after. This was associated with an increased level of suspended sediment concentration fluctuations, some transverse shear next to the bed and some surface temperature anomaly.