921 resultados para 250603 Reaction Kinetics and Dynamics
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this study, we review recent advances in PFM studies of micrometer scale ferroelectric capacitors, summarize the experimental PFM-based approach to investigation of fast switching processes, illustrate what information can be obtained from PFM experiments on domains kinetics, and delineate the scaling effect on polarization reversal mechanism. Particular attention is given to PFM studies of mechanical stress effect on polarization stability.
Resumo:
Objectives. The purpose of this study was to evaluate the reactivity and polymerization kinetics behavior of a model dental adhesive resin with water-soluble initiator systems. Methods. A monomer blend based on Bis-GMA, TEGDMA and HEMA was used as a model dental adhesive resin, which was polymerized using a thioxanthone type (QTX) as a photoinitiator. Binary and ternary photoinitiator systems were formulated using 1 mol% of each initiator. The co-initiators used in this study were ethyl 4-dimethylaminobenzoate (EDAB), diphenyliodonium hexafluorophosphate (DPIHFP), 1,3-diethyl-2-thiobarbituric acid (BARB), p-toluenesulfinic acid and sodium salt hydrate (SULF). Absorption spectra of the initiators were measured using a UV-Vis spectrophotometer, and the photon absorption energy (PAE) was calculated. The binary system camphorquinone (CQ)/amine was used as a reference group (control). Twelve groups were tested in triplicate. Fourier-transform infrared spectroscopy (FTIR) was used to investigate the polymerization reaction during the photoactivation period to obtain the degree of conversion (DC) and maximum polymerization rate (R-p(max)) profile of the model resin. Results. In the analyzed absorption profiles, the absorption spectrum of QTX is almost entirely localized in the UV region, whereas that of CQ is in the visible range. With respect to binary systems, CQ + EDAB exhibited higher DC and R-p(max) values. In formulations that contained ternary initiator systems, the group CQ + QTX + EDAB was the only one of the investigated experimental groups that exhibited an R-p(max) value greater than that of CQ + EDAB. The groups QTX + EDAB + DPIHFP and QTX + DPIHFP + SULF exhibited values similar to those of CQ + EDAB with respect to the final DC; however, they also exhibited lower reactivity. Significance. Water-soluble initiator systems should be considered as alternatives to the widely used CQ/amine system in dentin adhesive formulations. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Introduction . Compared to most equine horse breeds which are able to walk, trot and canter /gallop, the gait repertoire of the Icelandic horses additionally includes the lateral gait tölt and frequently also the pace. With respect to the tölt gait, special shoeing, saddling and riding techniques have been developed for Icelandic horses in order to enhance its expressiveness and regularity. Toes are left unnaturally long and heavy shoes and paddings, as well as weighted boots are used to enforce the individual gait predisposition. For the same reason, the rider is placed more caudally to the horse's centre of mass as compared to other riding techniques. The biomechanical impact of these methods on the health of the locomotor system has so far never been subject of systematic research. Objectives . The aims of the presented study are (1) to describe the kinetic and kinematic characteristics of the tölt performed on a treadmill, (2) to understand the mechanical consequences of shoeing manipulation (long hooves, weighted boots) on the loading and protraction movement of the limbs, as well as (3) to study the pressure distribution and effects on the gait pattern of 3 different saddle types used for riding Icelandic horses. Materials and methods . Gait analysis was carried out in 13 Icelandic horses at walk and at slow and medium tölting and trotting speeds on a high-speed treadmill instrumented for measuring vertical ground reaction forces as well as temporal and spatial gait variables. Kinematic data of horse, rider and saddle were measured simultaneously. Gait analysis was first carried out with high, long hooves (SH) without and in combination with weighted boots (ad aim (2)). Afterwards, horses were re-shod according to current horseshoeing standards (SN) and gait analysis was repeated (ad aims (1) and (2)). In a second trial, horses were additionally equipped with a pressure sensitive saddle mat and were ridden with a dressage-like saddle (SDres), an Icelandic saddle (Slcel) and a saddle cushion (SCush) in the standard saddle position (ad aim 3). Results and conclusions . Compared to trot at the same speed, tölting horses had a higher stride rate and lower stride impulses. At the tölt loading of the forelimbs was increased in form of higher peak vertical forces (Fzpeak) due to shorter relative stance durations (StDrel). Conversely, in the hindlimbs, longer StDrel resulted in lower Fzpeak. Despite the higher head-neck position at tölt, there was no measurable shift in weight to the hindlimbs. Footfall rhythm was in most horses laterally coupled at the tölt and frequently had a slight fourbeat and a very short suspension phase at trot; underlining the fact that performance of correct gaits in Icelandic horses needs special training. Gait performance as it is currently judged in competition could be improved using a shoeing with SH, resulting in a 21 ± 5 mm longer dorsal hoof wall, but also a weight gain of 273 ± 50 g at the distal limb due to heavier shoeing material. Compared to SN, SH led to a lower stride rate, a longer stride length and a higher, but not wider, forelimb protraction arc, which were also positively associated with speed. At the tölt, the footfall rhythm showed less tendency to lateral couplets and at the trot, the suspension phase was longer. However, on the long term, SH may have negative implications for the health of the palmar structures of the distal foot by increased limb impulses, higher torques at breakover (up to 20%); as well as peak vertical forces at faster speeds. Compared to the shoeing style, the saddle type had less influence on limb forces or movements. The slight weight shift to the rear with SCush and Slcel may be explained by the more caudal position of the rider relative to the horse's back. With SCush, pressure was highest under the cranial part of the saddle, whereas the saddles with trees had more pressure under the caudal area.
Resumo:
Considerable research has been conducted into the kinetics and selectivity of the oxygen delignification process to overcome limitation in its use. However most studies were performed in a batch reactor whereby the hydroxide and dissolved oxygen concentrations are changing during the reaction time in an effort to simulate tower performance in pulp mills. This makes it difficult to determine the reaction order of the different reactants in the rate expressions. Also the lignin content and cellulose degradation of the pulp are only established at the end of the experiment when the sample is removed from the batch reactor. To overcome these deficiencies, we have adopted a differential reactor system used frequently for fluid-solid rate studies (so-called Berty reactor) for measurement of oxygen delignification kinetics. In this reactor, the dissolved oxygen concentration and the alkali concentration in the feed are kept constant, and the rate of lignin removal is determined from the dissolved lignin content in the outflow stream measured by UV absorption. The mass of lignin removed is verified by analyzing the pulp at several time intervals. Experiments were performed at different temperatures, oxygen pressures and caustic concentrations. The delignification rate was found to be first order in HexA-free residual lignin content. The delignification rate reaction order in caustic concentration and oxygen pressure were determined to be 0.42 and 0.44 respectively. The activation energy was found to be 53kJ/mol. The carbohydrate degradation during oxygen delignification can be described by two contributions: one due to radicals produced by phenolic delignification, and a much smaller contribution due to alkaline hydrolysis. From the first order of the reaction and the pKa of the active lignin site, a new oxygen delignification mechanism is proposed. The number 3 carbon atom in the aromatic ring with the attached methoxyl group forms the lignin active site for oxygen adsorption and subsequent electrophic reaction to form a hydroperoxide with a pKa value similar to that of the present delignification kinetics. The uniform presence of the aromatic methoxyl groups in residual lignin further support the first order in lignin kinetics.
Resumo:
An asymptotic analysîs of the Eberstein-Glassman kinetic mechanlsm for the thermal décomposition of hydrazine is carried out. It is shown that at températures near 800°K and near 1000°K,and for hydrazine molar fractions of the order of unity, 10-2 the entire kinetics reduces to a single, overall reaction. Characteristic times for the chemical relaxation of ail active, intermediate species produced in the décomposition, and for the overall reaction, are obtained. Explicit expressions for the overall reaction rate and stoichiometry are given as functions of température, total molar concentration (or pressure)and hydrazine molar fraction. Approximate, patched expressions can then be obtained for values of température and hydrazine molar fraction between 750 and 1000°K, and 1 and 10-3 respectively.
Resumo:
To elucidate the mechanism of recognition of double-stranded DNA (dsDNA) by homopyrimidine polyamide ("peptide") nucleic acid (PNA) leading to the strand-displacement, the kinetics of the sequence-specific PNA/DNA binding have been studied. The binding was monitored with time by the gel retardation and nuclease S1 cleavage assays. The experimental kinetic curves obey pseudo-first-order kinetics and the dependence of the pseudo-first-order rate constant, kps, on PNA concentration, P, obeys a power law kps approximately P gamma with 2 < gamma < 3. The kps values for binding of decamer PNA to dsDNA target sites with one mismatch are hundreds of times slower than for the correct site. A detailed kinetic scheme for PNA/DNA binding is proposed that includes two major steps of the reaction of strand invasion: (i) a transient partial opening of the PNA binding site on dsDNA and incorporation of one PNA molecule with the formation of an intermediate PNA/DNA duplex and (ii) formation of a very stable PNA2/DNA triplex. A simple theoretical treatment of the proposed kinetic scheme is performed. The interpretation of our experimental data in the framework of the proposed kinetic scheme leads to the following conclusions. The sequence specificity of the recognition is essentially provided at the "search" step of the process, which consists in the highly reversible transient formation of duplex between one PNA molecule and the complementary strand of duplex DNA while the other DNA strand is displaced. This search step is followed by virtually irreversible "locking" step via PNA2/DNA triplex formation. The proposed mechanism explains how the binding of homopyrimidine PNA to dsDNA meets two apparently mutually contradictory features: high sequence specificity of binding and remarkable stability of both correct and mismatched PNA/DNA complexes.
Resumo:
Mode of access: Internet.
Resumo:
In the present study, we tested the hypothesis that walking intolerance in intermittent claudication (IC) is related to both slowed whole body oxygen uptake (Vo(2)) kinetics and altered activity of the active fraction of the pyruvate dehydrogenase complex (PDCa) in skeletal muscle. Ten patients with IC and peripheral arterial disease [ankle/brachial index (ABI) = 0.73 +/- 0.13] and eight healthy controls (ABI = 1. 17 +/- 0.13) completed three maximal walking tests. From these tests, averaged estimates of walking time, peak Vo(2) and the time constant of Vo(2) (tau) during submaximal walking were obtained. A muscle sample was taken from the gastrocnemius medialis muscle at rest and analysed for PDCa and several other biochemical variables. Walking time and peak Vo(2) were approx. 50 % lower in patients with IC than controls, and tau was 2-fold higher (P < 0.05). r was significantly correlated with walking time (r = -0.72) and peak Vo(2) (r = -0.66) in patients with IC, but not in controls. PDCa was not significantly lower in patients with IC than controls; however, PDCa tended to be correlated with tau (r = -0.56, P = 0.09) in patients with IC, but not in controls (r = -0.14). A similar correlation was observed between resting ABI and tau (r = -0.63, P = 0.05) in patients with IC. These data suggest that the impaired Vo(2) kinetics contributes to walking intolerance in IC and that, within a group of patients with IC, differences in Vo(2) kinetics might be partly linked to differences in muscle carbohydrate oxidation.
Resumo:
The thesis is divided into four chapters. They are: introduction, experimental, results and discussion about the free ligands and results and discussion about the complexes. The First Chapter, the introductory chapter, is a general introduction to the study of solid state reactions. The Second Chapter is devoted to the materials and experimental methods that have been used for carrying out tile experiments. TIle Third Chapter is concerned with the characterisations of free ligands (Picolinic acid, nicotinic acid, and isonicotinic acid) by using elemental analysis, IR spectra, X-ray diffraction, and mass spectra. Additionally, the thermal behaviour of free ligands in air has been studied by means of thermogravimetry (TG), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC) measurements. The behaviour of thermal decomposition of the three free ligands was not identical Finally, a computer program has been used for kinetic evaluation of non-isothermal differential scanning calorimetry data according to a composite and single heating rate methods in comparison with the methods due to Ozawa and Kissinger methods. The most probable reaction mechanism for the free ligands was the Avrami-Erofeev equation (A) that described the solid-state nucleation-growth mechanism. The activation parameters of the decomposition reaction for free ligands were calculated and the results of different methods of data analysis were compared and discussed. The Fourth Chapter, the final chapter, deals with the preparation of cobalt, nickel, and copper with mono-pyridine carboxylic acids in aqueous solution. The prepared complexes have been characterised by analyses, IR spectra, X-ray diffraction, magnetic moments, and electronic spectra. The stoichiometry of these compounds was ML2x(H20), (where M = metal ion, L = organic ligand and x = water molecule). The environments of cobalt, nickel, and copper nicotinates and the environments of cobalt and nickel picolinates were octahedral, whereas the environment of copper picolinate [Cu(PA)2] was tetragonal. However, the environments of cobalt, nickel, and copper isonicotinates were polymeric octahedral structures. The morphological changes that occurred throughout the decomposition were followed by SEM observation. TG, DTG, and DSC measurements have studied the thermal behaviour of the prepared complexes in air. During the degradation processes of the hydrated complexes, the crystallisation water molecules were lost in one or two steps. This was also followed by loss of organic ligands and the metal oxides remained. Comparison between the DTG temperatures of the first and second steps of the dehydration suggested that the water of crystallisation was more strongly bonded with anion in Ni(II) complexes than in the complexes of Co(II) and Cu(II). The intermediate products of decomposition were not identified. The most probable reaction mechanism for the prepared complexes was also Avrami-Erofeev equation (A) characteristic of solid-state nucleation-growth mechanism. The tempemture dependence of conductivity using direct current was determined for cobalt, nickel, Cl.nd copper isonicotinates. An activation energy (ΔΕ), the activation energy (ΔΕ ) were calculated.The ternperature and frequency dependence of conductivity, the frequency dependence of dielectric constant, and the dielectric loss for nickel isonicotinate were determined by using altemating current. The value of s paralneter and the value of'density of state [N(Ef)] were calculated. Keyword Thermal decomposition, kinetic, electrical conduclion, pyridine rnono~ carboxylic acid, cOlnplex, transition metal compJex.
Resumo:
High pressure homogenization (HPH) is a non-thermal method, which has been employed to change the activity and stability of biotechnologically relevant enzymes. This work investigated how HPH affects the structural and functional characteristics of a glucose oxidase (GO) from Aspergillus niger. The enzyme was homogenized at 75 and 150 MPa and the effects were evaluated with respect to the enzyme activity, stability, kinetic parameters and molecular structure. The enzyme showed a pH-dependent response to the HPH treatment, with reduction or maintenance of activity at pH 4.5-6.0 and a remarkable activity increase (30-300%) at pH 6.5 in all tested temperatures (15, 50 and 75°C). The enzyme thermal tolerance was reduced due to HPH treatment and the storage for 24 h at high temperatures (50 and 75°C) also caused a reduction of activity. Interestingly, at lower temperatures (15°C) the activity levels were slightly higher than that observed for native enzyme or at least maintained. These effects of HPH treatment on function and stability of GO were further investigated by spectroscopic methods. Both fluorescence and circular dichroism revealed conformational changes in the molecular structure of the enzyme that might be associated with the distinct functional and stability behavior of GO.
Resumo:
This study analyzed the reaction layer and measured the marginal crown fit of cast titanium applied to different phosphate-bonded investments, prepared under the following conditions (liquid concentration/casting temperature): Rema Exakt (RE) - 100%/237°C, 75%/287°C, Castorit Super C (CS)-100%/70°C, 75%/141°C and Rematitan Plus (RP)- 100%/430°C (special to titanium cast, as the control group). The reaction layer was studied using the Vickers hardness test, and analyzed by two way ANOVA and Tukey's HSD tests (α = 0.05). Digital photographs were taken of the crowns seated on the die, the misfit was measured using an image analysis system and One-way ANOVA, and Tukey's test was applied (α = 0.05). The hardness decreased from the surface (601.17 VHN) to 150 μm (204.03 VHN). The group CS 75%/141°C presented higher hardness than the other groups, revealing higher surface contamination, but there were no differences among the groups at measurements deeper than 150 μm. The castings made with CS - 100%/70°C presented the lowest levels of marginal misfit, followed by RE -100%/237°C. The conventional investments CS (100%) and RE (100%) showed better marginal fit than RP, but the CS (75%) had higher surface contamination.
Resumo:
Aims. We present a dynamical analysis of the galaxy cluster Abell 1942 based on a set of 128 velocities obtained at the European Southern Observatory. Methods. Data on individual galaxies are presented and the accuracy of the determined velocities as some properties of the cluster are discussed. We have also made use of publicly available Chandra X-ray data. Results. We obtained an improved mean redshift value z = 0.22513 +/- 0.0008 and velocity dispersion sigma = 908(139)(+147) km s(-1). Our analysis indicates that inside a radius of similar to 1.5 h(70)(-1) Mpc (similar to 7 arcmin) the cluster is well relaxed, without any remarkable features and the X-ray emission traces the galaxy distribution fairly well. Two possible optical substructures are seen at similar to 5 arcmin from the centre in the northwest and the southwest directions, but are not confirmed by the velocity field. These clumps are, however, kinematically bound to the main structure of Abell 1942. X-ray spectroscopic analysis of Chandra data resulted in a temperature kT = 5.5+/-0.5 keV and metal abundance Z = 0.33 +/- 0.15 Z(circle dot). The velocity dispersion corresponding to this temperature using the T(X-sigma) scaling relation is in good agreement with the measured galaxy velocities. Our photometric redshift analysis suggests that the weak lensing signal observed to the south of the cluster and previously attributed to a ""dark clump"" is produced by background sources, possibly distributed as a filamentary structure.
Resumo:
Biological neuronal networks constitute a special class of dynamical systems, as they are formed by individual geometrical components, namely the neurons. In the existing literature, relatively little attention has been given to the influence of neuron shape on the overall connectivity and dynamics of the emerging networks. The current work addresses this issue by considering simplified neuronal shapes consisting of circular regions (soma/axons) with spokes (dendrites). Networks are grown by placing these patterns randomly in the two-dimensional (2D) plane and establishing connections whenever a piece of dendrite falls inside an axon. Several topological and dynamical properties of the resulting graph are measured, including the degree distribution, clustering coefficients, symmetry of connections, size of the largest connected component, as well as three hierarchical measurements of the local topology. By varying the number of processes of the individual basic patterns, we can quantify relationships between the individual neuronal shape and the topological and dynamical features of the networks. Integrate-and-fire dynamics on these networks is also investigated with respect to transient activation from a source node, indicating that long-range connections play an important role in the propagation of avalanches.
Resumo:
The aim of this study was to determine if the carbohydrate (CHO) availability alters the rate of increase in the rating of perceived exertion (RPE) during high intensity exercise and whether this would be associated with physiological changes. Six males performed high intensity exercise after 48 h of controlled, high CHO (80%) and low CHO (10%) diets. Time to exhaustion was lower in the low compared to high CHO diet. The rate of increase in RPE was greater and the VO(2) slow component was lower in the low CHO diet than in the control. There was no significant condition effect for cortisol, insulin, pH, plasma glucose, potassium, or lactate concentrations. Multiple linear regression indicated that the total amplitude of VO(2) and perceived muscle strain accounted for the greatest variance in the rate of increase in RPE. These results suggest that cardiorespiratory variables and muscle strain are important afferent signals from the periphery for the RPE calculations.