998 resultados para 250502 Physical Chemistry of Macromolecules


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Competences have become a standard learning outcome in present university education within the European Higher Education Area (EHEA). In this regard, updated tools for their assessment have turned out essential in this new teaching-learning paradigm. Among them, one of the most promising tools is the “learner´s portfolio”, which is based on the gathering and evaluation of a range of evidences from the student, which provides a wider and more realistic view of his/her competence acquisition. Its appropriate use as a formative (continuous) assessment instrument allows a deeper appraisal of student´s learning, provided it does not end up as another summative (final) evaluation tool. In this contribution we propose the use of the portfolio as a unifying assessment tool within a university department (Physical Chemistry), exemplifying how the portfolio could yield both personalized student reports and averaged area reports on competence acquisition. A proposed stepwise protocol is given to organize the individual competence reports and estimate the global competence level following a bottom-up approach (i.e. ranging from the class group, subject, grade, and academic course).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Feed Materials Production Center, National Lead Company of Ohio"--Cover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Contains bibliographies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Editors: 1896-1932, W. D. Bancroft (with J. E. Trevor, 1896-1909);--1933-51, S. C. Lind;--1952-<53> W. A. Noyes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bibliographical footnotes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sediment samples from approximately 40 stations in the Western, middle and eastern Baltic Sea were investigated for manganese and iron content. In a series of interstitial water samples and numerous deep and surface water samples, the manganese content was likewise determined. A strong enrichment of these elements in the basin sediments was shown. In many instances, several percent manganese were present. As a maximum value, 13% was found in a 1 mm thick layer. Furthermore, a distinct decrease in manganese content with increasing sediment depth was shown in the upper 10 to 20 cm of the Sediment at almost all stations. Both phenomena may be explained by the release of manganese from the Sediment through diffusion. In the flat parts of the Baltic and those parts having good bottom water circulation, this diffusion progresses especially vigorously as a result of a steep gradient of the Mn++ concentration in the interstitial water-deep water interface. The manganese which hereby passes into the water overlying the bottom (manganese contents between 10 and 100 y Mn/l were determined in numerous deep water samples) is partly reprecipitated on the Sediment surface, and partly carried by currents into the deeper basins where it is finallv deposited. It is bound there as a manganese-rich mixed carbonate, the composition of which can be proved chemically and by x-ray methods. Iron is likewise of higher content in the basinal sediments, however, the extent of its enrichment is far less since it is less soluble than manganese under the reducing conditions in the sediments. The fine bands of manganese- and iron-rich layers in the basin sediments may likewise be explained as a result of diffusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic study of four parameters within the alkaline hydrothermal treatment of three commercial titania powders—anatase, rutile, and Degussa P25—was made. These powders were treated with 5, 7.5, 9, and 10 M NaOH between 100 and 220 °C for 20 h. The effects of alkaline concentration, hydrothermal temperature, and precursor phase and crystallite size on the resultant nanostructure formation have been studied through X-ray diffraction, Raman spectroscopy, transmission electron microscopy, and nitrogen adsorption. Through the correlation of these data, morphological phase diagrams were constructed for each commercial powder. Interpretation of the resultant morphological phase diagrams indicates that alkaline concentration and hydrothermal temperature affect nanostructure formation independently, where nanoribbon formation is significantly influenced by temperature for initial formation. The phase and crystallite size of the precursor also significantly influenced nanostructure formation, with rutile displaying a slower rate of precursor consumption compared with anatase. Small crystallite titania precursors formed nanostructures at reduced hydrothermal temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the physical characteristics of the indoor environment that affect human health and wellbeing is the key requirement underpinning the beneficial design of a healthcare facility (HCF). We reviewed and summarised physical factors of the indoor environment reported to affect human health and wellbeing in HCFs. Research materials included articles identified in a Pubmed search, guidelines, books, reports and monographs, as well as the bibliographies of review articles in the area studied. Of these, 209 publications were selected for this review. According to the literature, there is evidence that the following physical factors of the indoor environment affect the health and wellbeing of human beings in an HCF: safety, ventilation and HVAC systems, thermal environment, acoustic environment, interior layout and room type, windows (including daylight and views), nature and gardens, lighting, colour, floor covering, furniture and its placement, ergonomics, wayfinding, artworks and music. Some of these, in themselves, directly promote or hinder health and wellbeing, but the physical factors may also have numerous indirect impacts by influencing the behaviour, actions, and interactions of patients, their families and the staff members. The findings of this research enable a good understanding of the different physical factors of the indoor environment on health and wellbeing and provide a practical resource for those responsible for the design and operate the facilities as well as researchers investigating these factors. However, more studies are needed in order to inform the design of optimally beneficial indoor environments in HCFs for all user groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following the growing need for adoption of alternative fuels, this project aimed at getting more information on the oxidative potential of biodiesel particulate matter. Within this scope, the physical and chemical characteristics of biodiesel PM were analysed which lead to identification of reactive organic fractions. An in-house developed proflurescent nitroxide probe was used. This project further developed in-depth understanding of the chemical mechanisms following the detection of the oxidative potential of PM. This knowledge made a significant contribution to our understanding of processes behind negative health effects of pollution and enabled us to further develop new techniques to monitor it.