982 resultados para 240302 Nuclear and Particle Physics
Resumo:
We present a new model for the continuous measurement of a coupled quantum dot charge qubit. We model the effects of a realistic measurement, namely adding noise to, and filtering, the current through the detector. This is achieved by embedding the detector in an equivalent circuit for measurement. Our aim is to describe the evolution of the qubit state conditioned on the macroscopic output of the external circuit. We achieve this by generalizing a recently developed quantum trajectory theory for realistic photodetectors [P. Warszawski, H. M. Wiseman, and H. Mabuchi, Phys. Rev. A 65, 023802 (2002)] to treat solid-state detectors. This yields stochastic equations whose (numerical) solutions are the realistic quantum trajectories of the conditioned qubit state. We derive our general theory in the context of a low transparency quantum point contact. Areas of application for our theory and its relation to previous work are discussed.
Resumo:
We experimentally determine weak values for a single photon's polarization, obtained via a weak measurement that employs a two-photon entangling operation, and postselection. The weak values cannot be explained by a semiclassical wave theory, due to the two-photon entanglement. We observe the variation in the size of the weak value with measurement strength, obtaining an average measurement of the S-1 Stokes parameter more than an order of magnitude outside of the operator's spectrum for the smallest measurement strengths.
Resumo:
For two two-level atoms coupled to a single Bosonic mode that is driven and heavily damped, the steady state can be entangled by resonantly driving the system [S. Schneider and G. J. Milburn, Phys. Rev. A 65, 042107 (2002)]. We present a scheme to significantly increase the steady-state entanglement by using homodyne-mediated feedback, in which the Bosonic mode is that of an electromagnetic cavity, the output of which is measured and the resulting homodyne photocurrent is used to modulate the field driving the qubits. Such feedback can increase the nonlinear response to both the decoherence process of the two-qubit system and the coherent evolution of individual qubits. We present the properties of the entangled states using the SO(3) Q function.
Resumo:
We demonstrate a device that allows for the coherent analysis of a pair of optical frequency sidebands in an arbitrary basis. We show that our device is quantum noise limited, and hence applications for this scheme may be found in discrete and continuous variable optical quantum information experiments. (c) 2005 Optical Society of America.
Resumo:
We develop an all-optical scheme to generate superpositions of macroscopically distinguishable coherent states in traveling optical fields. It nondeterministically distills coherent-state superpositions (CSS's) with large amplitudes out of CSS's with small amplitudes using inefficient photon detection. The small CSS's required to produce CSS's with larger amplitudes are extremely well approximated by squeezed single photons. We discuss some remarkable features of this scheme: it effectively purifies mixed initial states emitted from inefficient single-photon sources and boosts negativity of Wigner functions of quantum states.
Resumo:
Recent progress in fabrication and control of single quantum systems presage a nascent technology based on quantum principles. We review these principles in the context of specific examples including: quantum dots, quantum electromechanical systems, quantum communication and quantum computation.
Resumo:
We describe an implementation of quantum error correction that operates continuously in time and requires no active interventions such as measurements or gates. The mechanism for carrying away the entropy introduced by errors is a cooling procedure. We evaluate the effectiveness of the scheme by simulation, and remark on its connections to some recently proposed error prevention procedures.
Resumo:
Mode of access: Internet.
Resumo:
Particle physics studies highly complex processes which cannot be directly observed. Scientific realism claims that we are nevertheless warranted in believing that these processes really occur and that the objects involved in them really exist. This dissertation defends a version of scientific realism, called causal realism, in the context of particle physics. I start by introducing the central theses and arguments in the recent philosophical debate on scientific realism (chapter 1), with a special focus on an important presupposition of the debate, namely common sense realism. Chapter 2 then discusses entity realism, which introduces a crucial element into the debate by emphasizing the importance of experiments in defending scientific realism. Most of the chapter is concerned with Ian Hacking's position, but I also argue that Nancy Cartwright's version of entity realism is ultimately preferable as a basis for further development. In chapter 3,1 take a step back and consider the question whether the realism debate is worth pursuing at all. Arthur Fine has given a negative answer to that question, proposing his natural ontologica! attitude as an alternative to both realism and antirealism. I argue that the debate (in particular the realist side of it) is in fact less vicious than Fine presents it. The second part of my work (chapters 4-6) develops, illustrates and defends causal realism. The key idea is that inference to the best explanation is reliable in some cases, but not in others. Chapter 4 characterizes the difference between these two kinds of cases in terms of three criteria which distinguish causal from theoretical warrant. In order to flesh out this distinction, chapter 5 then applies it to a concrete case from the history of particle physics, the discovery of the neutrino. This case study shows that the distinction between causal and theoretical warrant is crucial for understanding what it means to "directly detect" a new particle. But the distinction is also an effective tool against what I take to be the presently most powerful objection to scientific realism: Kyle Stanford's argument from unconceived alternatives. I respond to this argument in chapter 6, and I illustrate my response with a discussion of Jean Perrin's experimental work concerning the atomic hypothesis. In the final part of the dissertation, I turn to the specific challenges posed to realism by quantum theories. One of these challenges comes from the experimental violations of Bell's inequalities, which indicate a failure of locality in the quantum domain. I show in chapter 7 how causal realism can further our understanding of quantum non-locality by taking account of some recent experimental results. Another challenge to realism in quantum mechanics comes from delayed-choice experiments, which seem to imply that certain aspects of what happens in an experiment can be influenced by later choices of the experimenter. Chapter 8 analyzes these experiments and argues that they do not warrant the antirealist conclusions which some commentators draw from them. It pays particular attention to the case of delayed-choice entanglement swapping and the corresponding question whether entanglement is a real physical relation. In chapter 9,1 finally address relativistic quantum theories. It is often claimed that these theories are incompatible with a particle ontology, and this calls into question causal realism's commitment to localizable and countable entities. I defend the commitments of causal realism against these objections, and I conclude with some remarks connecting the interpretation of quantum field theory to more general metaphysical issues confronting causal realism.
Resumo:
We show that the quasifission paths predicted by the one-body dissipation dynamics, in the slowest phase of a binary reaction, follow a quasistatic path, which represents a sequence of states of thermal equilibrium at a fixed value of the deformation coordinate. This establishes the use of the statistical particle-evaporation model in the case of dynamical time-evolving systems. Pre- and post-scission multiplicities of neutrons and total multiplicities of protons and α particles in fission reactions of 63Cu+92Mo, 60Ni+100Mo, 63Cu+100Mo at 10 MeV/u and 20Ne+144,148,154Sm at 20 MeV/u are reproduced reasonably well with statistical model calculations performed along dynamic trajectories whose slow stage (from the most compact configuration up to the point where the neck starts to develop) lasts some 35×10−21 s.