984 resultados para 218-1


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Depth-integrated in situ rates were calculated for each environment as a function of the available photosynthetically active radiation (PAR). Irradiance profiles were calculated for each environment (sea ice, melt pond, water under the ice and open water) from the daily average incoming solar shortwave irradiance measured by a pyranometer (Kipp & Zonen, Delft, Netherland) mounted on the ship. We used light attenuation coefficients of 10 m**-1 for snow, 1.5 m**-1 for sea ice (Perovich, 1996) and 0.1 m**-1 for Atlantic-influenced Arctic seawater, based on literature values and observations during the cruise. Planar irradiance was transformed to scalar irradiance according to Ehn and Mundy (2013) and Katlein et al., (2014). Water column production was integrated over the euphotic zone (1% of incoming irradiance) and sea ice production over the ice core thickness. Melt pond coverage and sea ice concentration were taken into account when calculating the total primary production per area.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Net Primary Production was measured using the 14**C uptake method with minor modifications. Seawater samples were spiked with 0.1µCi ml**-1 of 14**C labelled sodium bicarbonate (Moravek Biochemicals, Brea, USA) and distributed in 10 clear bottles (20 ml each). Subsequently they were incubated for 12 h at -1.3°C under different scalar irradiances (0-420 µmol photons m**-2 s**-1) measured with a spherical sensor (Spherical Micro Quantum Sensor US-SQS/L, Heinz Walz, Effeltrich, Germany). At the end of the incubation, samples were filtered onto 0.2 µm nitrocellulose filters and the particulate radioactive carbon uptake was determined by liquid scintillation counting using Filter count scintillation cocktail (Perkin Elmer, Waltham, USA). The carbon uptake values in the dark were subtracted from the carbon uptake values measured in the light incubations. Dissolved inorganic carbon (DIC) was measured for each sample using the flow injection system (Hall and Aller, 1992). The DIC concentration was taken into account to calculate the amount of labeled bicarbonate incorporated into the cell. Carbon fixation rates were normalized volumetrically and by chlorophyll a. Photosynthesis-irradiance curves (PI curves) were fitted using MATLAB® according to the equation proposed by Platt et al. (1980) including a photoinhibition parameter (beta) and providing the main photosynthetic parameters: maximum Chla normalized carbon fixation rate if there were no photoinhibition (Pb) and the initial slope of the saturation curve (alpha). The derived parameters: light intensity at which photosynthesis is maximal (Im), the carbon fixation rate at that maximal irradiance (Pbm) and the adaptation parameter or photoacclimation index (Ik) were calculated according to Platt et al. (1982).