999 resultados para 21-210


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report U-Pb and 39Ar-40Ar measurements on plutonic rocks recovered from the Ocean Drilling Program (ODP) Legs 173 and 210. Drilling revealed continental crust (Sites 1067 and 1069) and exhumed mantle (Sites 1070 and 1068) along the Iberia margin and exhumed mantle (Site 1277) on the conjugate Newfoundland margin. Our data record a complex igneous and thermal history related to the transition from rifting to seafloor spreading. The results show that the rift-to-drift transition is marked by a stuttering start of MORB-type magmatic activity. Subsequent to initial alkaline magmatism, localized mid-oceanic ridge basalts (MORB) magmatism was again replaced by basin-wide alkaline events, caused by a low degree of decompression melting due to tectonic delocalization of deformation. Such "off-axis" magmatism might be a common process in (ultra-) slow oceanic spreading systems, where "magmatic" and "tectonic" spreading varies in both space and time.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proxy indicators of sea surface temperature and equatorial divergence based on radiolarian assemblage data, and of trade wind intensity based on eolian grain size data show similar aspects of variability during the late Pleistocene: All indicators fluctuate at higher frequencies than the 100,000-year glacial-interglacial cycle, display reduced amplitude variations since 300,000 years ago, exhibit a change in the record character at about 300,000 years ago (the mid-Brunhes climatic event), and have higher amplitude variations in sediments 300,000-850,000 years old. Time series analyses were conducted to determine the spectral character of each record (delta18O of planktonic foraminifer, sea surface temperature values, equatorial divergence indicators, and wind intensity indicators) and to quantify interrecord coherence and phase relationships. The record was divided at the 300,000-year clear change in climatic variability (nonstationarity). The delta18O-based time scale is better lower in the core so our spectral analyses concentrated on the interval from 402,000-774,000 years. The delta18O spectra show 100,000- and 41,000-year power in the younger portion, 0-300,000 years, and 100,000-, 41,000- and 23,000-year power in the older interval, all highly coherent and in phase with the SPECMAP average stacked isotope record. Unlike the isotope record the dominant period in both the eolian grain size and equatorial divergence indicators is 31,000 years. This period is also important in the sea surface temperature signal where the dominant spectral peak is 100,000 years. The 31,000-year spectral component is coherent and in phase between the eolian and divergence records, confirming the link between atmospheric and ocean surface circulation for the first time in the paleoclimate record. Since the 31,000-year power appears in independent data sets within this core and also appears in other equatorial records [J. Imbrie personal communication, 1987], we assume it to be real and representative of both a nonlinear response to orbital forcing, possibly a combination of orbital tilt and eccentricity, and some resonance phenomenon required to amplify the response at this period so that it appears as a dominant frequency component. The mid-Brunhes climatic event is an important aspect of these records, but its cause remains unknown.