998 resultados para 175-1077B
Resumo:
As a result of both culture and sediment core studies, the ratio of germanium (Ge) to silicon (Si) in diatom shells has been proposed as a proxy for monitoring whole-ocean changes in seawater Ge/Si, a ratio affected by changes in continental weathering. However, because of the difficulties of extracting and cleaning diatom frustules from deep-sea sediments, only samples from highly pure diatom oozes in the Antarctic region have been previously analyzed. Here we present data on diatom Ge/Si ratios, (Ge/Si)opal, for the time interval between 3.1 and 1.9 Ma from a mid-latitude, coastal upwelling area where significant terrigenous sediment input complicated the sample processing and analyses. In general, our (Ge/Si)opal values show the same decreasing trend after 2.6 Ma than previously measured in Antarctic sediments (Shemesh et al., 1989. Paleoceanography 4, 221-231), but with a noisier background that may reflect the local imprint of proximal continental input superimposed upon global changes in the ocean reservoir. The time of initiation of large-scale North Hemisphere glaciation at ~2.6 Ma is characterized by a declining pattern of diatom Ge/Si ratios, which could have resulted from a global increase in the input of riverine Si due to enhanced silica weathering and/or equatorward (northward) intrusions of subantarctic waters enriched in silica. High (Ge/Si)opal ratios are associated with high opal contents from the same sediment samples and with warm climate as indicated by depleted benthic foraminiferal d18O values from the North and Equatorial Atlantic. Cold periods signified by enriched benthic d18O values, on the contrary, are associated with lower (Ge/Si)opal ratios. We interpret diatom Ge/Si values to reflect the prevailing weathering state on the continents, with greater chemical weathering during warm and wet periods of the Pliocene and less during cooler and drier intervals.
Resumo:
ODP Site 1078 situated under the coast of Angola provides the first record of the vegetation history for Angola. The upper 11 m of the core covers the past 30 thousand years, which has been analysed palynologically in decadal to centennial resolution. Alkenone sea surface temperature estimates were analysed in centennial resolution. We studied sea surface temperatures and vegetation development during full glacial, deglacial, and interglacial conditions. During the glacial the vegetation in Angola was very open consisting of grass and heath lands, deserts and semi-deserts, which suggests a cool and dry climate. A change to warmer and more humid conditions is indicated by forest expansion starting in step with the earliest temperature rise in Antarctica, 22 thousand years ago. We infer that around the period of Heinrich Event 1, a northward excursion of the Angola Benguela Front and the Congo Air Boundary resulted in cool sea surface temperatures but rain forest remained present in the northern lowlands of Angola. Rain forest and dry forest area increase 15 thousand years ago. During the Holocene, dry forests and Miombo woodlands expanded. Also in Angola globally recognised climate changes at 8 thousand and 4 thousand years ago had an impact on the vegetation. During the past 2 thousand years, savannah vegetation became dominant.
Resumo:
Planktonic foraminiferal assemblages from the upper Pleistocene part of Hole 1087A (0 to 12.1 meters below seafloor) are investigated to assess the role of global and local climate changes on surface circulation in the southern Benguela region. The benthic stable isotope record indicates that the studied interval is representative of the last four climatic cycles, that is, down to marine isotope Stage (MIS) 12. The species assemblages bear a clear transitional to subpolar character, with Neogloboquadrina pachyderma (d), Globorotalia inflata, and Globigerina bulloides, in order of decreasing abundance, as the dominant taxa. This species association presently characterizes the mixing domain of old upwelled and open ocean waters, seaward of the Benguela upwelling cells. Abundance variation of the dominant foraminiferal species roughly follows a glacial-interglacial pattern down to MIS 8, suggesting an alternation of upwelling strength and associated seaward extension of the belt of upwelled water as a response to global climate changes. This pattern is interrupted from ~250 ka down to MIS 12, where the phase relationship with global climate is ill defined and might be interpreted as a local response of the southern Benguela region to the mid-Brunhes event. Of particular interest is a single pulse of newly upwelled waters at the location of Site 1087 during early MIS 9 as indicated by a peak abundance of sinistral N. pachyderma (s). Variable input of warm, salty Indian Ocean thermocline waters into the southeast Atlantic, a key component of the Atlantic heat conveyor, is indicated by abundance changes of the tropical taxon Globorotalia menardii. From this tracer, we suggest that interocean exchange was hardly interrupted throughout the last 460 k.y., but was most effective at glacial terminations, particularly during Terminations I and II, as well as during the upper part of MIS 12. This maximum input of Indian Ocean waters around the southern tip of Africa is associated with the reseeding of G. menardii in the tropical Atlantic.
Resumo:
High-resolution planktonic and benthic stable isotope records from Ocean Drilling Program Site 1087 off southeast Africa provide the basis for a detailed study of glacial-interglacial (G-IG) cycles during the last 500 k.y. This site is located in the Southern Cape Basin at the boundary of the coastal upwelling of Benguela and close to the gateway between the South Atlantic and the Indian Oceans. It therefore monitors variations of the hydrological fronts associated with the upwelling system and the Atlantic-Indian Ocean interconnections, in relation to global climate change. The coldest period of the last 500 k.y. corresponds to marine isotope Stage (MIS) 12, when surface water temperature was 4°C lower than during the last glacial maximum (LGM) as recorded by the surface-dwelling foraminifer Globigerinoides ruber. The warmest periods occurred during MISs 5 and 11, a situation slightly different to that observed at Site 704, which is close to the Polar Front Zone, where there is no significant difference between the interglacial stages for the past 450 k.y., except the long period of warmth during MIS 11. The planktonic and benthic carbon isotope records do not follow the G-IG cycles but show large oscillations related to major changes in the productivity regime. The largest positive 13C excursion between 260 and 425 ka coincides with the global mid-Brunhes event of carbonate productivity. The oxygen and carbon isotopic gradients between surface and deep waters display long-term changes superimposed on rapid and high-frequency fluctuations that do not follow the regular G-IG pattern; these gradients indicate modifications of the temperature, salinity, and productivity gradients due to changes in the thermocline depth, the position of the hydrological fronts, and the strength of the Benguela Current.
Resumo:
Fil: Ghilini, Anabela. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación. Instituto de Investigaciones en Humanidades y Ciencias Sociales (UNLP-CONICET); Argentina.
Resumo:
Fil: García, Jonatan Gastón. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.