875 resultados para 16s rRNA sequencing
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Dengue é uma arbovirose que afeta cerca de 100 milhões de pessoas anualmente, em mais de 100 países situados nas regiões tropicais e subtropicais. Foi considerada a doença viral que mais cresceu no ultimo ano, repercutindo em impactos sociais e econômicos nas regiões endêmicas devido às altas taxas de morbidade e mortalidade desencadeadas pela infecção. O principal vetor da dengue é o mosquito Aedes aegypti, presente em toda a faixa tropical e subtropical. Por apresentar hematofagia antropofílica, rápido desenvolvimento e características comportamentais especificas, é um excelente transmissor do vírus dengue. Medidas de controle da disseminação da dengue são restritas à eliminação do mosquito vetor, e um tratamento específico ainda não foi desenvolvido, bem como a criação de uma vacina que previna simultaneamente a infecção pelos quatro sorotipos do arbovírus. Uma característica que determina a disseminação de doenças é a alta competência vetorial de seus mosquitos transmissores, que tem sido associada à composição da microbiota intestinal do inseto. As bactérias presente no intestino do mosquito exercem funções relacionadas a sua nutrição, desenvolvimento e reprodução, e são também um importante fator na eliminação de patógenos, por interferirem diretamente na atividade viral, ou indiretamente a partir da ativação das vias antivirais pelos micro-organismos. Dessa forma, este trabalho visa estudar a diversidade microbiana intestinal do mosquito Aedes aegypti em diferentes estágios de vida, através de sequenciamento de última geração com a plataforma MiSeq Illumina
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant.
Resumo:
The genus Methylobacterium comprises pink-pigmented facultative methylotrophic (PPFM) bacteria, known to be an important plant-associated bacterial group. Species of this group, described as plant-nodulating, have the dual capacity of producing cytokinin and enzymes, such as pectinase and cellulase, involved in systemic resistance induction and nitrogen fixation under specific plant environmental conditions. The aim hereby was to evaluate the phylogenetic distribution of Methylobacterium spp. isolates from different host plants. Thus, a comparative analysis between sequences from structural (16S rRNA) and functional mxaF (which codifies for a subunit of the enzyme methanol dehydrogenase) ubiquitous genes, was undertaken. Notably, some Methylobacterium spp. isolates are generalists through colonizing more than one host plant, whereas others are exclusively found in certain specific plant-species. Congruency between phylogeny and specific host inhabitance was higher in the mxaF gene than in the 16S rRNA, a possible indication of function-based selection in this niche. Therefore, in a first stage, plant colonization by Methylobacterium spp. could represent generalist behavior, possibly related to microbial competition and adaptation to a plant environment. Otherwise, niche-specific colonization is apparently impelled by the host plant.
Resumo:
Le tecniche di next generation sequencing costituiscono un potente strumento per diverse applicazioni, soprattutto da quando i loro costi sono iniziati a calare e la qualità dei loro dati a migliorare. Una delle applicazioni del sequencing è certamente la metagenomica, ovvero l'analisi di microorganismi entro un dato ambiente, come per esempio quello dell'intestino. In quest'ambito il sequencing ha permesso di campionare specie batteriche a cui non si riusciva ad accedere con le tradizionali tecniche di coltura. Lo studio delle popolazioni batteriche intestinali è molto importante in quanto queste risultano alterate come effetto ma anche causa di numerose malattie, come quelle metaboliche (obesità, diabete di tipo 2, etc.). In questo lavoro siamo partiti da dati di next generation sequencing del microbiota intestinale di 5 animali (16S rRNA sequencing) [Jeraldo et al.]. Abbiamo applicato algoritmi ottimizzati (UCLUST) per clusterizzare le sequenze generate in OTU (Operational Taxonomic Units), che corrispondono a cluster di specie batteriche ad un determinato livello tassonomico. Abbiamo poi applicato la teoria ecologica a master equation sviluppata da [Volkov et al.] per descrivere la distribuzione dell'abbondanza relativa delle specie (RSA) per i nostri campioni. La RSA è uno strumento ormai validato per lo studio della biodiversità dei sistemi ecologici e mostra una transizione da un andamento a logserie ad uno a lognormale passando da piccole comunità locali isolate a più grandi metacomunità costituite da più comunità locali che possono in qualche modo interagire. Abbiamo mostrato come le OTU di popolazioni batteriche intestinali costituiscono un sistema ecologico che segue queste stesse regole se ottenuto usando diverse soglie di similarità nella procedura di clustering. Ci aspettiamo quindi che questo risultato possa essere sfruttato per la comprensione della dinamica delle popolazioni batteriche e quindi di come queste variano in presenza di particolari malattie.
Resumo:
Phylogenies of housekeeping gene and 16S rRNA gene sequences were compared to improve the classification of the bacterial family Pasteurellaceae and knowledge of the evolutionary relationships of its members. Deduced partial protein sequences of the housekeeping genes atpD, infB and rpoB were compared in 28, 36 and 28 representative taxa of the Pasteurellaceae, respectively. The monophyly of representatives of the genus Gallibacterium was recognized by analysis of all housekeeping genes, while members of Mannheimia, Actinobacillus sensu stricto and the core group of Pasteurella sensu stricto formed monophyletic groups with two out of three housekeeping genes. Representatives of Mannheimia, Actinobacillus sensu stricto, [Haemophilus] ducreyi and [Pasteurella] trehalosi formed a monophyletic unit by analysis of all three housekeeping genes, which was in contrast to the 16S rRNA gene-derived phylogeny, where these taxa occurred at separate positions in the phylogenetic tree. Representatives of the Rodent, Avian and Aphrophilus-Haemophilus 16S rRNA gene groups were weakly supported by phylogenetic analysis of housekeeping genes. Phylogenies derived by comparison of the housekeeping genes diverged significantly from the 16S rRNA gene-derived phylogeny as evaluated by the likelihood ratio test. A low degree of congruence was also observed between the individual housekeeping gene-derived phylogenies. Estimates on speciation derived from 16S rRNA and housekeeping gene sequence comparisons resulted in quite different evolutionary scenarios for members of the Pasteurellaceae. The phylogeny based on the housekeeping genes supported observed host associations between Mannheimia, Actinobacillus sensu stricto and [Pasteurella] trehalosi and animals with paired hooves.
Resumo:
Approximately 350 base pairs (bp) of the mitochondrial 16S rRNA gene were used to study the phylogenetic relationships among 5 genera of the clawed lobster family Nephropidae (infraorder Astacidea), including Homarus, Homarinus, Metanephrops, Nephrops, and Nephropsis. Maximum-parsimony analysis, using a hermit crab, Pagurus pollicaris (infraorder Anomura), as an outgroup. produced a tree topology in which Homarus and Nephrops formed a well-supported clade that excluded Homarinus. The same tree topology was obtained from both neighbor-joining and maximum-likelihood analyses, Some morphological characters that appear synapomorphic for Nephrops and Metanephrops may be due to convergence rather than symplesiomorphy. The current taxonomy, therefore, does not reflect the phylogeny of this group as suggested by the molecular data. More molecular data and studies using homologous morphological characters me needed to reach a better understanding of the phylogenetic history of clawed lobsters.
Resumo:
16S rRNA genes and transcripts of Acidobacteria were investigated in 57 grassland and forest soils of three different geographic regions. Acidobacteria contributed 9-31% of bacterial 16S rRNA genes whereas the relative abundances of the respective transcripts were 4-16%. The specific cellular 16S rRNA content (determined as molar ratio of rRNA:rRNA genes) ranged between 3 and 80, indicating a low in situ growth rate. Correlations with flagellate numbers, vascular plant diversity and soil respiration suggest that biotic interactions are important determinants of Acidobacteria 16S rRNA transcript abundances in soils. While the phylogenetic composition of Acidobacteria differed significantly between grassland and forest soils, high throughput denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism fingerprinting detected 16S rRNA transcripts of most phylotypes in situ. Partial least squares regression suggested that chemical soil conditions such as pH, total nitrogen, C:N ratio, ammonia concentrations and total phosphorus affect the composition of this active fraction of Acidobacteria. Transcript abundance for individual Acidobacteria phylotypes was found to correlate with particular physicochemical (pH, temperature, nitrogen or phosphorus) and, most notably, biological parameters (respiration rates, abundances of ciliates or amoebae, vascular plant diversity), providing culture-independent evidence for a distinct niche specialization of different Acidobacteria even from the same subdivision.
Resumo:
Understanding the origins, transport and fate of contamination is essential to effective management of water resources and public health. Individuals and organizations with management responsibilities need to understand the risks to ecosystems and to humans from contact with contamination. Managers also need to understand how key contaminants vary over time and space in order to design and prioritize mitigation strategies. Tumacacori National Historic Park (NHP) is responsible for management of its water resources for the benefit of the park and for the health of its visitors. The existence of microbial contaminants in the park poses risks that must be considered in park planning and operations. The water quality laboratory at the Maricopa Agricultural Center (in collaboration with stakeholder groups and individuals located in the ADEQ-targeted watersheds) identified biological changes in surface water quality in impaired reaches rivers to determine the sources of Escherichia coli (E. coli); bacteria utilizing innovative water quality microbial/bacterial source tracking methods. The end goal was to support targeted watershed groups and ADEQ towards E. coli reductions. In the field monitoring was conducted by the selected targeted watershed groups in conjunction with The University of Arizona Maricopa Agricultural Center Water Quality Laboratory. This consisted of collecting samples for Bacteroides testing from multiple locations on select impaired reaches, to determine contamination resulting from cattle, human recreation, and other contributions. Such testing was performed in conjunction with high flow and base flow conditions in order to accurately portray water quality conditions and variations. Microbial monitoring was conducted by The University of Arizona Water Quality Laboratory at the Maricopa Agricultural Center using genetic typing to differentiate among two categories of Bacteroides: human and all (total). Testing used microbial detection methodologies and molecular source tracking techniques.^
Resumo:
Escherichia coli mRNA translation is facilitated by sequences upstream and downstream of the initiation codon, called Shine–Dalgarno (SD) and downstream box (DB) sequences, respectively. In E.coli enhancing the complementarity between the DB sequences and the 16S rRNA penultimate stem resulted in increased protein accumulation without a significant affect on mRNA stability. The objective of this study was to test whether enhancing the complementarity of plastid mRNAs downstream of the AUG (downstream sequence or DS) with the 16S rRNA penultimate stem (anti-DS or ADS region) enhances protein accumulation. The test system was the tobacco plastid rRNA operon promoter fused with the E.coli phage T7 gene 10 (T7g10) 5′-untranslated region (5′-UTR) and DB region. Translation efficiency was tested by measuring neomycin phosphotransferase (NPTII) accumulation in tobacco chloroplasts. We report here that the phage T7g10 5′-UTR and DB region promotes accumulation of NPTII up to ∼16% of total soluble leaf protein (TSP). Enhanced mRNA stability and an improved NPTII yield (∼23% of TSP) was obtained from a construct in which the T7g10 5′-UTR was linked with the NPTII coding region via a NheI site. However, replacing the T7g10 DB region with the plastid DS sequence reduced NPTII and mRNA levels to 0.16 and 28%, respectively. Reduced NPTII accumulation is in part due to accelerated mRNA turnover.
Resumo:
The epsilon enhancer element is a pyrimidine-rich sequence that increases expression of T7 gene 10 and a number of Escherichia coli mRNAs during initiation of translation and inhibits expression of the recF mRNA during elongation. Based on its complementarity to the 460 region of 16S rRNA, it has been proposed that epsilon exerts its enhancer activity by base pairing to this complementary rRNA sequence. We have tested this model of enhancer action by constructing mutations in the 460 region of 16S rRNA and examining expression of epsilon-containing CAT reporter genes and recF–lacZ fusions in strains expressing the mutant rRNAs. Replacement of the 460 E.coli stem–loop with that of Salmonella enterica serovar Typhimurium or a stem–loop containing a reversal of all 8 bp in the helical region produced fully functional rRNAs with no apparent effect on cell growth or expression of any epsilon-containing mRNA. Our experiments confirm the reported effects of the epsilon elements on gene expression but show that these effects are independent of the sequence of the 460 region of 16S rRNA, indicating that epsilon–rRNA base pairing does not occur.
Resumo:
Microorganisms play an important role in the biogeochemistry of the ocean surface layer, but spatial and temporal structures in the distributions of specific bacterioplankton species are largely unexplored, with the exceptions of those organisms that can be detected by either autofluorescence or culture methods. The use of rRNA genes as genetic markers provides a tool by which patterns in the growth, distribution, and activity of abundant bacterioplankton species can be studied regardless of the ease with which they can be cultured. Here we report an unusual cluster of related 16S rRNA genes (SAR202, SAR263, SAR279, SAR287, SAR293, SAR307) cloned from seawater collected at 250 m in the Sargasso Sea in August 1991, when the water column was highly stratified and the deep chlorophyll maximum was located at a depth of 120 m. Phylogenetic analysis and an unusual 15-bp deletion confirmed that the genes were related to the Green Non-Sulfur phylum of the domain Bacteria. This is the first evidence that representatives of this phylum occur in the open ocean. Oligonucleotide probes were used to examine the distribution of the SAR202 gene cluster in vertical profiles (0-250 m) from the Atlantic and Pacific Oceans, and in discrete (monthly) time series (O and 200 m) (over 30 consecutive months in the Western Sargasso Sea. The data provide robust statistical support for the conclusion that the SAR202 gene cluster is proportionately most abundant at the lower boundary of the deep chlorophyll maximum (P = 2.33 x 10(-5)). These results suggest that previously unsuspected stratification of microbial populations may be a significant factor in the ecology of the ocean surface layer.