993 resultados para 165-998B


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drilling in the Caribbean Sea during Ocean Drilling Program Leg 165 has recovered a large number of silicic tephra layers and led to the discovery of three major episodes of explosive volcanism that occurred during the last 55 m.y. on the margins of this evolving ocean basin. The earliest episode is marked by Paleocene to early Eocene explosive volcanism on the Cayman Rise, associated with activity of the Cayman arc, an island arc that was the westward extension of the Sierra Maestra volcanic arc in southern Cuba. Caribbean sediments also document a major mid- to late Eocene explosive volcanic episode that is attributed to ignimbrite-forming eruptions on the Chortis Block in Central America to the west. This event is contemporaneous with the first phase of activity of the Sierra Madre volcanic episode in Mexico, the largest ignimbrite province on Earth. In the Caribbean sediments, a Miocene episode of explosive volcanism is comparable to the Eocene event, and also attributed to sources in the Central American arc to the west. Radiometric 40Ar/39Ar dates have been obtained for biotites and sanidines from 27 tephra layers, providing absolute ages for the volcanic episodes and further constraining the geochronology of Caribbean sediments. Volcanic activity of the Cayman arc is attributed to the northward subduction of the leading edge of the oceanic plate that carried the Caribbean oceanic plateau. Although the factors generating the large episodes of Central American explosive volcanism are unclear, we propose that they are related to contemporary major readjustments of plate tectonic configuration in the Pacific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean Drilling Program Site 1002 in the Cariaco Basin was drilled in the final two days of Leg 165 with only a short transit remaining to the final port of San Juan, Puerto Rico. Because of severe time constraints, cores from only the first of the three long replicate holes (Hole 1002C) were opened at sea for visual description, and the shipboard sampling was restricted to the biostratigraphic examination of core catchers. The limited sampling and general scarcity of biostratigraphic datums within the late Quaternary interval covered by this greatly expanded hemipelagic sequence resulted in a very poorly defined age model for Site 1002 as reported in the Leg 165 Initial Reports volume of the Proceedings of the Ocean Drilling Program. Here, we present for the first time a new integrated stratigraphy for Site 1002 based on the standard of late Quaternary oxygen-isotope variations linked to a suite of refined biostratigraphic datums. These new data show that the sediment sequence recovered by Leg 165 in the Cariaco Basin is continuous and spans the time interval from 0 to ~580 ka, with a basal age roughly twice as old as initially suspected from the tentative shipboard identification of a single biostratigraphic datum. Lithologic subunits recognized at Site 1002 are here tied into this new stratigraphic framework, and temporal variations in major sediment components are reported. The biogenic carbonate, opal, and organic carbon contents of sediments in the Cariaco Basin tend to be high during interglacials, whereas the terrigenous contents of the sediments increase during glacials. Glacioeustatic variations in sea level are likely to exert a dominant control on these first-order variations in lithology, with glacial surface productivity and the nutrient content of waters in the Cariaco Basin affected by shoaling glacial sill depths, and glacial terrigenous inputs affected by narrowing of the inner shelf and increased proximity of direct riverine sources during sea-level lowstands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The western warm pools of the Atlantic and Pacific oceans are a critical source of heat and moisture for the tropical climate system. Over the past five million years, global mean temperatures have cooled by 3-4 °C. Yet, current reconstructions of sea surface temperatures indicate that temperature in the warm pools has remained stable during this time. This stability has been used to suggest that tropical sea-surface temperatures are controlled by some sort of thermostat-like regulation. Here we reconstruct sea surface temperatures in the South China Sea, Caribbean Sea and western equatorial Pacific Ocean for the past five million years, using a combination of the Mg/Ca, TEXH86-and Uk'37 surface temperature proxies. Our data indicate that during the period of Pliocene warmth from about 5 to 2.6 million years ago, the western Pacific and western Atlantic warm pools were about 2 °C warmer than today. We suggest that the apparent lack of warming seen in the previous reconstructions was an artefact of low seawater Mg/Ca ratios in the Pliocene oceans. Taking this bias into account, our data indicate that tropical sea surface temperatures did change in conjunction with global mean temperatures. We therefore conclude that the temperature of the warm pools of the equatorial oceans during the Pliocene was not limited by a thermostat-like mechanism.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Ocean Drilling Program Sites 1001A (Caribbean Sea) and 1050C (western North Atlantic) display obliquity and precession cycles throughout polarity zone C27 of the late Danian stage (earliest Cenozoic time). Sliding-window spectra analysis and direct cycle counting on downhole logs and high-resolution Fe variations at both sites yield the equivalent of 35-36 obliquity cycles. This cycle-tuned duration for polarity chron C27 of 1.45 Ma (applying a modern mean obliquity period of 40.4 ka) is consistent with trends from astronomical tuning of early Danian polarity chron C29 and 40Ar/39Ar age calibration of the Campanian-Maastrichtian magnetic polarity time scale. The cycle-tuned Danian stage (sensu Berggren et al. 1995, in SEPM Special Publications, 54, 129-212) spans 3.65 Ma (65.5-61.85 Ma). Spreading rates on a reference South Atlantic synthetic profile display progressive slowing during the Maastrichtian to Danian stages, then remained relatively constant through late Palaeocene and early Eocene time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attempts to place Palaeolithic finds within a precise climatic framework are complicated by both uncertainty over the radiocarbon calibration beyond about 21,500 14C years bp (Reimer et al., 2004) and the absence of a master calendar chronology for climate events from reference archives such as Greenland ice cores or speleothems (Svensson et al., 2006, doi:10.1016/j.quascirev.2006.08.003). Here we present an alternative approach, in which 14C dates of interest are mapped directly onto the palaeoclimate record of the Cariaco Basin by means of its 14C series (Hughen et al., 2004, doi:10.1126/science.1090300), circumventing calendar age model and correlation uncertainties, and placing dated events in the millennial-scale climate context of the last glacial period. This is applied to different sets of dates from levels with Mousterian artefacts, presumably produced by late Neanderthals, from Gorham's Cave in Gibraltar: first, generally accepted estimates of about 32,000 14C years bp for the uppermost Mousterian levels (Pettitt and Bailey, 2000; Bronk Ramsey et al., 2002, doi:10.1111/1475-4754.00040); second, a possible extended Middle Palaeolithic occupation until about 28,000 14C years bp (Finlayson et al., 2006, doi:10.1038/nature05195); and third, more contentious evidence for persistence until about 24,000 14C years bp (Finlayson et al., 2006, doi:10.1038/nature05195). This study shows that the three sets translate to different scenarios on the role of climate in Neanderthal extinction. The first two correspond to intervals of general climatic instability between stadials and interstadials that characterized most of the Middle Pleniglacial and are not coeval with Heinrich Events. In contrast, if accepted, the youngest date indicates that late Neanderthals may have persisted up to the onset of a major environmental shift, which included an expansion in global ice volume and an increased latitudinal temperature gradient. More generally, our radiocarbon climatostratigraphic approach can be applied to any 'snapshot' date from discontinuous records in a variety of deposits and can become a powerful tool in evaluating the climatic signature of critical intervals in Late Pleistocene human evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compaction curves for 11 samples from the mixed sediments and calcareous chalk with clay from the Caribbean Sites 999 and 1001 are discussed with reference to compaction curves for calcareous ooze and chalk of the Ontong Java Plateau (Leg 130). The burial history is discussed from preconsolidation data and present burial conditions and suggests a removal of ~400 m of sediment at the hiatus 166 meters below seafloor (mbsf) at Site 1001. This interpretation predicts a previous burial to >500 mbsf for depth intervals containing microstylolites, which corresponds to observations at Sites 999 and 807 (Ontong Java Plateau). Thus, data from three sites from two widely separate regions indicate that microstylolites in carbonates form at minimum burial depths deeper than 500 m. No direct link between formation of microstylolites and cementation was found, suggesting that dissolution and precipitation are not necessarily related. Porosity rebound during core retrieval could not be detected for soft sediments, whereas a porosity rebound of ~2% was deduced for deeper, cemented intervals. Comparing the compaction curves, two distinct rates of porosity loss are noted: (1) samples dominated by clay (>45% insoluble residue) compact at a higher rate than samples dominated by fine-grained carbonate and (2) fine-grained carbonate supported samples (with <45% insoluble residue) compact at the same rate irrespective of the content of nonsupporting microfossils or pore-filling clay.