991 resultados para 158-957
Resumo:
Fil: Ferrero, Adrián Marcelo. Universidad Nacional de La Plata. Facultad de Humanidades y Ciencias de la Educación; Argentina.
Resumo:
Controls of sediment dynamics at the Galician continental slope (NW Iberia) during the past 30 ka were reconstructed from three new gravity cores (GeoB11035-1, 130206-1, 13071-1) based on sedimentological (e.g. sortable silt, IRD), micropalaeontological (e.g. coccoliths), geochemical (AMS 14C, XRF) and geophysical (e.g. magnetic susceptibility) diagnostics. The data are consistent with existing regional knowledge that, during marine isotope stages 3-1, variations in detrital input, marine productivity and sea level were the essential drivers of sediment availability on the slope, whereas deep-water current velocities controlled sediment deposition: (1) the period prior to 30 cal ka BP is characterized by minor but systematic variations in various proxies which can be associated with D-O cycles; (2) between 30 and 18 cal ka BP, high detrital input and steady slope-parallel currents led to constant sedimentation; (3) from the LGM until 10 cal ka BP, the shelf-transgressive sea-level rise increased the detrital particle flux; sedimentation was influenced by significantly enhanced deep-water circulation during the Bølling/Allerød, and subsequent slowing during the Younger Dryas; (4) an abrupt and lasting change to hemipelagic sedimentation at ca. 10 cal ka BP was probably due to Holocene warming and decelerated transgression; (5) after 5 cal ka BP, additional input of detrital material to the slope is plausibly linked to the evolution of fine-grained depocentres on the Galician shelf, this being the first report of this close shelf-slope sedimentary linkage off NW Iberia. Furthermore, there is novel evidence of the nowadays strong outer shelf Iberian Poleward Current becoming established at about 15.5 cal ka BP. The data also demonstrate that small-scale morphologic features and local pathways of sediment export from the neighbouring shelf play an important role for sediment distribution on the NW Iberian slope, including a hitherto unknown sediment conduit off the Ría de Arousa. By implication, the impact of local morphology on along- and down-slope sediment dynamics is more complex than commonly considered, and deserves future attention.
Resumo:
Scanning electron microscope (SEM)-based analyses of the laminated diatom oozes encountered during Leg 138 reveal three major laminae types. The first lamina type is composed of multiple layers of ~20-?m-thick diatom mats, which form laminae dominated by assemblages of the pennate diatom, Thalassiothrix longissima. More than one variety/subspecies of T. longissima occurs within these laminae (referred to as the T. longissima Group). The second lamina type is composed of a mixed-assemblage of several species of diatoms (centric and pennate varieties), calcareous nannofossils, and subordinate quantities of radiolarians, silicoflagellates and foraminifers. The third lamina type is dominated by an assemblage of nannofossils and minor amounts of those fossil components mentioned above. This last form of lamination is compositionally similar to the background sediment type, foraminifernannofossil ooze (F-NO). Two lamina associations occur within the laminated intervals; the first comprises alternations of T. longissima Group and mixed-assemblage laminae (average thickness is ~6 mm) and the second is composed of T. longissima and nannofossil-rich laminae (average thickness is ~3.5 mm). The arrangement of laminae probably originates from the deposition of multiple layers of 20-?m-thick mats from one mat-flux episode. The much thinner nannofossil-rich laminae are interpreted to represent periods of more ônormalö deposition between mat-flux episodes. The occurrence of several varieties/subspecies of T. longissima within individual mat layers is consistent with observations of Rhizosolenia diatom mats in the modern world ocean.