994 resultados para 146-893B
Resumo:
Changes in the source of intermediate waters to the southern California margin may have caused variations in seafloor oxygen levels on stadial-interstadial time scales. We test this hypothesis using the Nd isotopic composition of benthic foraminifera and fossil fish debris from ODP Sites 893 and 1017 to track the composition of intermediate waters across interstadials 8-14 (~37-52 ka) during Marine Isotope Stage 3. The epsilon-Nd values of waters bathing the seafloor at Site 893 were typically ~-9 and those bathing Site 1017 were ~-7, both of which are significantly less radiogenic than waters that had originated in either the North Pacific or Southern Ocean (by the time such waters reached the southern California margin). Detrital silicate epsilon-Nd values of nearly -12 suggest that this offset toward lower epsilon-Nd values was likely caused by boundary scavenging that partially overprinted the water mass composition with local/regional fluvial Nd inputs. In spite of the evidence for boundary scavenging, the lack of systematic seawater Nd isotope changes on a stadial-interstadial basis suggests that the provenance of the intermediate waters did not change, and that the waters were derived from the Southern Ocean. Instead, changes in local/regional sea surface productivity may have caused the recorded changes in seafloor oxygenation.
Resumo:
Oceanic sediments deposited at high rate close to continents are dominated by terrigenous material. Aside from dilution by biogenic components, their chemical compositions reflect those of nearby continental masses. This study focuses on oceanic sediments coming from the juvenile Canadian Cordillera and highlights systematic differences between detritus deriving from juvenile crust and detritus from old and mature crust. We report major and trace element concentrations for 68 sediments from the northernmost part of the Cascade forearc, drilled at ODP Sites 888 and 1027. The calculated weighted averages for each site can then be used in the future to quantify the contribution of subducted sediments to Cascades volcanism. The two sites have similar compositions but Site 888, located closer to the continent, has higher sandy turbidite contents and displays higher bulk SiO2/Al2O3 with lower bulk Nb/Zr, attributed to the presence of zircons in the coarse sands. Comparison with published data for other oceanic sedimentary piles demonstrates the existence of systematic differences between modern sediments deriving from juvenile terranes (juvenile sediments) and modern sediments derived from mature continental areas (cratonic sediments). The most striking systematic difference is for Th/Nb, Th/U, Nb/U and Th/Rb ratios: juvenile sediments have much lower ratios than cratonic sediments. The small enrichment of Th over Nb in cratonic sediments may be explained by intracrustal magmatic and metamorphic differentiation processes. In contrast, their elevated Th/U and Nb/U ratios (average values of 6.87 and 7.95, respectively) in comparison to juvenile sediments (Th/U ~ 3.09, Nb/U ~ 5.15) suggest extensive U and Rb losses on old cratons. Uranium and Rb losses are attributed to long-term leaching by rain and river water during exposure of the continental crust at the surface. Over geological times, the weathering effects create a slow but systematic increase of Th/U with exposure time.