955 resultados para 13-cis-retinoic Acid
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The isotypes of RAR and RXR are retinoic acid and retinoid X acid receptors, respectively, whose ligand-binding domain contains the ligand-dependent activation function, with distinct pharmacological targets for retinoids, involved in the treatment of various cancers and skin diseases. Due to the major challenge which cancer treatment and cure still imposes after many decades to the international scientific community, there is actually considerable interest in new ligands with increased bioactivity. We have focused on the retinoid acid receptor, which is considered an interesting target for drug design. In this work, we carried out density functional geometry optimizations, and different docking procedures. We performed screening in a large database (hundreds of thousands of molecules which we optimized at the AM1 level) yielding a set of potential bioactive ligands. A new ligand was selected and optimized at the B3LYP/6-31G* level. A flexible docking program was used to investigate the interactions between the receptor and the new ligand. The result of this work is compared with several crystallographic ligands of RAR. Our theoretically more bioactive new-ligand indicates stronger and more hydrogen bonds as well as hydrophobic interactions with the receptor. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Retinoic acid (RA) plays a role in regulating cardiac geometry and function throughout life. The aim of this study was to analyze the cardiac effects of RA in adult rats. Wistar rats were randomly allocated to a control group (n = 18) receiving standard rat chow and a group treated with RA (n = 14) receiving standard rat chow supplemented with RA for 90 days. All animals were evaluated by echocardiography, isolated papillary muscle function, and morphological studies. Whereas the RA-treated group developed an increase in both left ventricular (LV) mass and LV end-diastolic diameter, the ratio of LV wall thickness to LV end-diastolic diameter remained unchanged when compared with the control group. In the isolated papillary muscle preparation, RA treatment decreased the time to peak developed tension and increased the maximum velocity of isometric relengthening, indicating that systolic and diastolic function was improved. Although RA treatment produced an increase in myocyte cross-sectional area, the myocardial collagen volume fraction was similar to controls. Thus our study demonstrates that small physiological doses of RA induce ventricular remodeling resembling compensated volume-overload hypertrophy in rats.
Resumo:
To evaluate the relationship between carotenoid concentrations in serum and breast tissue, we measured serum carotenoid concentrations and endogenous carotenoid levels in breast adipose tissue of women with benign breast tumor (n = 46) or breast cancer (n = 44). Before extraction, serum was digested with lipase and cholesterol esterase, and breast adipose tissue was saponified. Serum and tissue carotenoids were extracted with ether/hexane and measured by using HPLC with a C30 column. Serum retinoic acid was extracted with chloroform/methanol and measured using HPLC with a C18 column. There were no significant differences in serum carotenoids [lutein, zeaxanthin, cryptoxanthin (both α- and β-), α-carotene, all-trans β-carotene, 13-cis β-carotene and lycopene], retinoids (retinol, all-trans and 13-cis retinoic acids), and α- and -γ- tocopherol concentrations between benign breast tumor patients and breast cancer patients. A substantial amount of 9-cis β- carotene was present in adipose tissue and was the only carotenoid that had a significantly lower level in benign breast tumor patients than in breast cancer patients. Correlations between carotenoid concentrations in serum and in breast adipose tissue were determined by combining the data of the two groups. Concentrations of the major serum carotenoids except cryptoxanthin showed significant correlations with breast adipose tissue carotenoid levels. When the concentrations of serum carotenoids were adjusted for serum triglycerides or LDL, correlations between serum carotenoid concentrations and breast adipose tissue carotenoid levels markedly increased, including that of cryptoxanthin (P <0.001). The strong correlation between serum carotenoid concentrations and endogenous breast adipose tissue carotenoid levels indicate that dietary intake influences adipose tissue carotenoid levels as well as serum concentrations, and that adipose tissue is a dynamic reservoir of fat-soluble nutrients.
Resumo:
The objective of this study was to evaluate the role of retinoic acid in experimental postinfarction myocardial remodeling. Wistar rats were subjected to myocardial infarction (MI) and treated with retinoic acid (RA), 0.3 mg/(kg · d) (MI-RA, n = 29), or fed a control diet (MI, n = 34). After 6 mo, the surviving rats (MI-RA = 18 and MI = 22) underwent echocardiograms, and isolated hearts were tested for function in vitro. The cross-sectional area of the myocyte (CSA) and interstitial collagen fraction (IC) were measured in a cross section of the heart stained by hematoxylin-eosin and picrosirius red, respectively. The CSA was smaller in the MI-RA group [229 (220, 234) μm 2] [medians (lower quartile, upper quartile)] than in the MI group [238 (232, 241) μm 2] (P = 0.01) and IC was smaller in the MI-RA group [2.4 (1.7, 3.1)%] than in the MI group [3.5 (2.6, 3.9)%] (P = 0.05). The infarct size did not differ between the groups [MI = 44.6 (40.8, 48.4)%, MI-RA = 45 (38.6, 47.2)%]. Maximum rate of rise of left ventricular pressure (+dp/dt) was greater in the MI-RA group (2645 ± 886 mm Hg/s) than in the MI group (2081 ± 617 mm Hg/s) (P = 0.05). The other variables tested did not differ between groups. Retinoic acid supplementation of rats for 6 mo attenuates the ventricular remodeling process after MI. © 2005 American Society for Nutrition.
Resumo:
Background: Ethanol (EtOH) alters the all-trans-retinoic acid (ATRA) levels in some tissues. Retinol and ATRA are essential for cell proliferation, differentiation, and maintenance of prostate homeostasis. It has been suggested that disturbances in retinol/ATRA concentration as well as in the expression of retinoic acid receptors (RARs) contribute to benign prostate hyperplasia and prostate cancer. This study aimed to evaluate whether EtOH consumption is able to alter retinol and ATRA levels in the plasma and prostate tissue as well as the expression of RARs, cell proliferation, and apoptosis index. Methods: All animals were divided into 4 groups (n = 10/group). UChA: rats fed 10% (v/v) EtOH ad libitum; UChACo: EtOH-naïve rats without access to EtOH; UChB: rats fed 10% (v/v) EtOH ad libitum; UChBCo: EtOH-naïve rats without access to EtOH. Animals were euthanized by decapitation after 60 days of EtOH consumption for high-performance liquid chromatography and light microscopy analysis. Results: EtOH reduced plasma retinol concentration in both UChA and UChB groups, while the retinol concentration was not significantly different in prostate tissue. Conversely, plasma and prostate ATRA levels increased in UChB group compared with controls, beyond the up-regulation of RARβ and -γ in dorsal prostate lobe. Additionally, no alteration was found in cell proliferation and apoptosis index involving dorsal and lateral prostate lobe. Conclusions: We conclude that EtOH alters the plasma retinol concentrations proportionally to the amount of EtOH consumed. Moreover, high EtOH consumption increases the concentration of ATRA in plasma/prostate tissue and especially induces the RARβ and RARγ in the dorsal prostate lobe. EtOH consumption and increased ATRA levels were not associated with cell proliferation and apoptosis in the prostate. © 2012 by the Research Society on Alcoholism.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
OBJECTIVE: We sought to investigate the effects of antenatal retinoic acid on the pulmonary vasculature and vascular endothelial growth factor (VEGF) and VEGF receptors (VEGFR) expression in a nitrofen-induced congenital diaphragmatic hernia (CDH) model. STUDY DESIGN: Rat fetuses were exposed to nitrofen at gestational day 9.5 and/or all-trans retinoic acid (ATRA) at gestational days 18.5-20.5. We assessed lung growth, airway, and vascular morphometry. VEGF, VEGFR1, and VEGFR2 expression was analyzed by Western blotting and immunohistochemistry. Continuous data were analyzed by analysis of variance and Kruskal-Wallis test. RESULTS: CDH decreased lung to body weight ratio, increased mean linear intercept and mean transection length/airspace, and decreased mean airspace cord length. ATRA did not affect lung growth or morphometry. CDH increased proportional medial wall thickness of arterioles while ATRA reduced it. ATRA recovered expression of VEGF and receptors, which were reduced in CDH. CONCLUSION: Retinoic acid and VEGF may provide pathways for preventing pulmonary hypertension in CDH.
Resumo:
Embryonic carcinoma cells are widely used models for studying the mechanisms of proliferation and differentiation occurring during early embryogenesis. We have now investigated how down-regulation of P2X2 and P2X7 receptor expression by RNA interference (RNAi) affects neural differentiation and phenotype specification of P19 embryonal carcinoma cells. Wild-type P19 embryonal carcinoma cells or cells stably expressing shRNAs targeting P2X2 or P2X7 receptor expression were induced to differentiate into neurons and glial cells in the presence of retinoic acid. Silencing of P2X2 receptor expression along differentiation promoted cell proliferation and an increase in the percentage of cells expressing glial-specific GFAP, while the presence of beta-3 tubulin-positive cells diminished at the same time. Proliferation induction in the presence of stable anti-P2X2 receptor RNAi points at a mechanism where glial proliferation is favored over growth arrest of progenitor cells which would allow neuronal maturation. Differently from the P2X2 receptor, inhibition of P2X7 receptor expression during neural differentiation of P19 cells resulted in a decrease in cell proliferation and GFAP expression, suggesting the need of functional P2X7 receptors for the progress of gliogenesis. The results obtained in this study indicate the importance of purinergic signaling for cell fate determination during neural differentiation, with P2X2 and P2X7 receptors promoting neurogenesis and gliogenesis, respectively. The shRNAs down-regulating P2X2 or P2X7 receptor gene expression, developed during this work, present useful tools for studying mechanisms of neural differentiation in other stem cell models. (C) 2012 ISDN. Published by Elsevier Ltd. All rights reserved.
Resumo:
Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation (E-cadherin, connexin 26 (Cx26), and Cx32). RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells.
Resumo:
Acute promyelocytic leukaemia (APL) patients are successfully treated with all-trans retinoic acid (ATRA). However, concurrent chemotherapy is still necessary and less toxic therapeutic approaches are needed. Earlier studies suggested that in haematopoietic neoplasms, the green tea polyphenol epigallocatechin-3-gallate (EGCG) induces cell death without adversely affecting healthy cells. We aimed at deciphering the molecular mechanism of EGCG-induced cell death in acute myeloid leukaemia (AML). A significant increase of death-associated protein kinase 2 (DAPK2) levels was found in AML cells upon EGCG treatment paralleled by increased cell death that was significantly reduced upon silencing of DAPK2. Moreover, combined ATRA and EGCG treatment resulted in cooperative DAPK2 induction and potentiated differentiation. EGCG toxicity of primary AML blasts correlated with 67 kDa laminin receptor (67LR) expression. Pretreatment of AML cells with ATRA, causing downregulation of 67LR, rendered these cells resistant to EGCG-mediated cell death. In summary, it was found that (i) DAPK2 is essential for EGCG-induced cell death in AML cells, (ii) ATRA and EGCG cotreatment significantly boosted neutrophil differentiation, and 67LR expression correlates with susceptibility of AML cells to EGCG. We thus suggest that EGCG, by selectively targeting leukaemic cells, may improve differentiation therapies for APL and chemotherapy for other AML subtypes.