989 resultados para 12-113
Resumo:
We propose a new biostratigraphic scheme comprising the Eucyrtidium spinosum, Eucyrtidium antiquum (new), Lychnocanoma conica (emended), Clinorhabdus robusta (emended) and Stylosphaera radiosa (emended) Zones, in ascending order, in Eocene to Oligocene sediments drilled on Maud Rise in Southern Atlantic Ocean (Site 689, Ocean Drilling Program Leg 113). The bases of these zones are defined by the lowermost occurrences of E. spinosum, E. antiquum, L. conica, C. robusta and the uppermost occurrence of Axoprunum irregularis (?), respectively. From correlation to the magnetostratigraphic data, the E. spinosum, E. antiquum, L. conica, C. robusta and S. radiosa Zones are assigned to the late middle Eocene through late Eocene (Subchrons C17n2 to C13r), earliest Oligocene (C13n to C11n), late early Oligocene (C11n to C10n2), early late Oligocene (C10n1 to C8r) and latest Oligocene (C8r to C7An), respectively. The four boundary datum levels and supplementary datum levels such as the lowermost occurrences of A. irregularis (?), Dicolocapsa microcephala and Lithomelissa challengerae may be recognized in other ODP sites in the Southern Ocean. The first occurrence of E. antiquum approximates the Eocene-Oligocene boundary in Southern Ocean but the last occurrences of many species such as Periphaena decora, D. microcephala and the Lithomelissa sphaerocephalis group are commonly diachronous between high latitude sites. Two new species, Theocyrtis (?) triapenna and Spirocyrtis parvaturris, are described.
Resumo:
The concentration of dissolved Sr and the distribution of 87Sr/86Sr isotope ratios in Leg 113 interstitial waters may be interpreted in terms of mixing of Sr from four different reservoirs: indigenous seawater, marine carbonate minerals, and basaltic and siliceous detrital material. The input to the pore water from these reservoirs is determined by the reactivity of the reservoir rather than its size. The presence of strontium derived from siliceous detrital material is unequivocally demonstrated in the pore waters of the hemipelagic deposits, and is also significant in the calcareous Maud Rise sediments due to the unusually low degree of carbonate recrystallization. Also, alteration of basic volcanic material is important at several sites.
Resumo:
Site 695 lies on the southeast margin of the South Orkney microcontinent on the northern margin of the Weddell Sea, at 62°23.48'S, 43°27.10'W in 1305 m water depth. The inorganic properties of interstitial waters at this site, including sulfate reduction, biogenic methane production, and high concentrations of ammonia and phosphate, imply high microbial activity. However, no clear relationship between amino acid composition and concentration and the type of microbial activity (e.g., sulfate reduction or methane production) can be identified. The THAA (total hydrolyzable amino acids) values range between 2.45 and 17.31 µmol/L, averaging 7.14 µmol/L. The mean concentrations and relative abundance values of acidic, basic, neutral, aromatic, and sulfur-containing amino acids are 1.34 (18%), 1.09 (15%), 3.93 (54%), 0.50 (8%), and 0.02 (0%) µmol/L, respectively. Glycine is the most abundant amino acid residue, with serine, glutamic acid, and ornithine next. The DFAA (dissolved free amino acids) values range from 0.10 to 12.73 µmol/L, averaging 4.07 µmol/L. The acidic, basic, neutral, aromatic, and sulfurcontaining amino acids are on average 0.21, 0.79, 2.56, 0.41, and 0.01 µmol/L, respectively. The relative abundances of acidic, basic, neutral, and aromatic amino acids average 4%, 18%, 58%, and 15%, respectively. Predominance of DFAA over DCAA (dissolved combined amino acids) in interstitial waters of Lithologic Units I and II is contrary to the predominance of DCAA over DFAA in other interstitial waters and seawater. The comparison of amino acid compositions between DCAA and siliceous plankton suggests that the DCAA in interstitial waters originally comes from amino acids derived from siliceous plankton. However, other sources which are much enriched in glutamic acid contribute to the DCAA composition.