968 resultados para 06MT19970707-track
Resumo:
‘Complexity’ is a term that is increasingly prevalent in conversations about building capacity for 21st Century professional engineers. Society is grappling with the urgent and challenging reality of accommodating seven billion people, meeting needs and innovating lifestyle improvements in ways that do not destroy atmospheric, biological and oceanic systems critical to life. Over the last two decades in particular, engineering educators have been active in attempting to build capacity amongst professionals to deliver ‘sustainable development’ in this rapidly changing global context. However curriculum literature clearly points to a lack of significant progress, with efforts best described as ad hoc and highly varied. Given the limited timeframes for action to curb environmental degradation proposed by scientists and intergovernmental agencies, the authors of this paper propose it is imperative that curriculum renewal towards education for sustainable development proceeds rapidly, systemically, and in a transformational manner. Within this context, the paper discusses the need to consider a multiple track approach to building capacity for 21st Century engineering, including priorities and timeframes for undergraduate and postgraduate curriculum renewal. The paper begins with a contextual discussion of the term complexity and how it relates to life in the 21st Century. The authors then present a whole of system approach for planning and implementing rapid curriculum renewal that addresses the critical roles of several generations of engineering professionals over the next three decades. The paper concludes with observations regarding engaging with this approach in the context of emerging accreditation requirements and existing curriculum renewal frameworks.
Resumo:
To effectively address the high rate of failure of Insulated Rail Joints (IRJs) in the heavy haul lines, a research plan was designed and implemented with particular attention to understand their mechanical behaviour and deterioration process. In this paper, part of this ongoing research is described. During the past decades many studies have tried to improve the service life of IRJs by introducing a new structural design or material for IRJ components. This paper looks into this problem from a different perspective highlighting the significance of localised condition of track to the loads and responses of the IRJs. Results from a series of field measurements conducted in a rail track within the Australian Rail Track Corporation (ARTC) network are discussed. The interactive effects of IRJ responses and localised track condition are further investigated using the results obtained from numerical simulations. The field measurements and the simulation results provide valuable insight on the influence of track condition to the behaviour of IRJs.
Resumo:
The Bruneau-Jarbidge eruptive center (BJEC) in the central Snake River Plain, Idaho, USA consists of the Cougar Point Tuff (CPT), a series of ten, high-temperature (900-1000°C) voluminous ignimbrites produced over the explosive phase of volcanism (12.8-10.5 Ma) and more than a dozen equally high-temperature rhyolite lava flows produced during the effusive phase (10.5-8 Ma). Spot analyses by ion microprobe of oxygen isotope ratios in 210 zircons demonstrate that all of the eruptive units of the BJEC are characterized by zircon δ¹⁸O values ≤ 2.5‰, thus documenting the largest low δ¹⁸O silicic volcanic province known on Earth (>10⁴ km³). There is no evidence for voluminous normal δ¹⁸O magmatism at the BJEC that precedes generation of low δ¹⁸O magmas as there is at other volcanic centers that generate low δ¹⁸O magmas such as Heise and Yellowstone. At these younger volcanic centers of the hotspot track, such low δ¹⁸O magmas represent ~45 % and ~20% respectively of total eruptive volumes. Zircons in all BJEC tuffs and lavas studied (23 units) document strong δ¹⁸O depletion (median CPT δ¹⁸OZrc = 1.0‰, post-CPT lavas = 1.5‰) with the third member of the CPT recording an excursion to minimum δ¹⁸O values (δ¹⁸OZrc= -1.8‰) in a supereruption > 2‰ lower than other voluminous low δ¹⁸O rhyolites known worldwide (δ¹⁸OWR ≤0.9 vs. 3.4‰). Subsequent units of the CPT and lavas record a progressive recovery in δ¹⁸OZrc to ~2.5‰ over a ~ 4 m.y. interval (12 to 8 Ma). We present detailed evidence of unit-to-unit systematic patterns in O isotopic zoning in zircons (i.e. direction and magnitude of Δcore-rim), spectrum of δ¹⁸O in individual units, and zircon inheritance patterns established by re-analysis of spots for U-Th-Pb isotopes by LA-ICPMS and SHRIMP. In conjunction with mineral thermometry and magma compositions, these patterns are difficult to reconcile with the well-established model for "cannibalistic" low δ¹⁸O magma genesis at Heise and Yellowstone. We present an alternative model for the central Snake River Plain using the modeling results of Leeman et al. (2008) for ¹⁸O depletion as a function of depth in a mid-upper crustal protolith that was hydrothermally altered by infiltrating meteoric waters prior to the onset of silicic magmatism. The model proposes that BJEC silicic magmas were generated in response to the propagation of a melting front, driven by the incremental growth of a vast underlying mafic sill complex, over a ~5 m.y. interval through a crustal volume in which a vertically asymmetric δ¹⁸OWR gradient had previously developed that was sharply inflected from ~ -1 to 10‰ at mid-upper crustal depths. Within the context of the model, data from BJEC zircons are consistent with incremental melting and mixing events in roof zones of magma reservoirs that accompany surfaceward advance of the coupled mafic-silicic magmatic system.
Resumo:
This week there has been discussions between leaders from the Pacific Rim over the Trans-Pacific Partnership in Bali, Indonesia at APEC...
Resumo:
This paper presents a combined experimental, numerical, and theoretical study on the mechanical behaviors of track-shaped concrete-filled steel tubular (SCFRT) stub columns stiffened by rebars under compressive load. A total of 18 track-shaped concrete-filled steel tubular specimens including 12 specimens stiffened by rebars and 6 non-stiffened counterparts are tested, with consideration of parameters including flakiness ratio, concrete strength, and stiffeners. Failure pattern, bearing capacity, and ductility are all analyzed and discussed based on the experimental results. The numerical simulation by finite element (FE) software ABAQUS is also conducted. Based on both experimental and numerical results, theoretical formula to predict the load-bearing capacity of SCFRT stub columns subjected to axial compression loading is established according to the superposition principle of ultimate load-bearing capacity with rational simplification. The proposed theoretical method provides accurate predictions on the load bearing capacity by comparing with experimental results from 18 groups of specimens.
Resumo:
The paper presents a new approach to improve the detection and tracking performance of a track-while-scan (TWS) radar. The contribution consists of three parts. In Part 1 the scope of various papers in this field is reviewed. In Part 2, a new approach for integrating the detection and tracking functions is presented. It shows how a priori information from the TWS computer can be used to improve detection. A new multitarget tracking algorithm has also been developed. It is specifically oriented towards solving the combinatorial problems in multitarget tracking. In Part 3, analytical derivations are presented for quantitatively assessing, a priori, the performance of a track-while-scan radar system (true track initiation, false track initiation, true track continuation and false track deletion characteristics). Simulation results are also shown.
Resumo:
The paper presents, in three parts, a new approach to improve the detection and tracking performance of a track-while-scan radar. Part 1 presents a review of the current status of the subject. Part 2 details the new approach. It shows how a priori information provided by the tracker can be used to improve detection. It also presents a new multitarget tracking algorithm. In the present Part, analytical derivations are presented for assessing, a priori, the performance of the TWS radar system. True track initiation, false track initiation, true track continuation and false track deletion characteristics have been studied. It indicates how the various thresholds can be chosen by the designer to optimise performance. Simulation results are also presented.
Resumo:
he paper presents, in three parts, a new approach to improve the detection and tracking performance of a track-while-scan (TWS) radar. Part 1 presents a review of current status. In this part, Part 2, it is shown how the detection can be improved by utilising information from tracker. A new multitarget tracking algorithm, capable of tracking manoeuvring targets in clutter, is then presented. The algorithm is specifically tailored so that the solution to the combinatorial problem presented in a companion paper can be applied. The implementation aspects are discussed and a multiprocessor architecture identified to realise the full potential of the algorithm. Part 3 presents analytical derivations for quantitative assessment of the performance of the TWS radar system. It also shows how the performance can be optimised.
Resumo:
Effective arbovirus surveillance is essential to ensure the implementation of control strategies, such as mosquito suppression, vaccination, or dissemination of public warnings. Traditional strategies employed for arbovirus surveillance, such as detection of virus or virus-specific antibodies in sentinel animals, or detection of virus in hematophagous arthropods, have limitations as an early-warning system. A system was recently developed that involves collecting mosquitoes in CO2-baited traps, where the insects expectorate virus on sugar-baited nucleic acid preservation cards. The cards are then submitted for virus detection using molecular assays. We report the application of this system for detecting flaviviruses and alphaviruses in wild mosquito populations in northern Australia. This study was the first to employ nonpowered passive box traps (PBTs) that were designed to house cards baited with honey as the sugar source. Overall, 20/144 (13.9%) of PBTs from different weeks contained at least one virus-positive card. West Nile virus Kunjin subtype (WNVKUN), Ross River virus (RRV), and Barmah Forest virus (BFV) were detected, being identified in 13/20, 5/20, and 2/20 of positive PBTs, respectively. Importantly, sentinel chickens deployed to detect flavivirus activity did not seroconvert at two Northern Territory sites where four PBTs yielded WNVKUN. Sufficient WNVKUN and RRV RNA was expectorated onto some of the honey-soaked cards to provide a template for gene sequencing, enhancing the utility of the sugar-bait surveillance system for investigating the ecology, emergence, and movement of arboviruses. © 2014, Mary Ann Liebert, Inc.
Resumo:
This paper reports a measurement of the cross section for the pair production of top quarks in ppbar collisions at sqrt(s) = 1.96 TeV at the Fermilab Tevatron. The data was collected from the CDF II detector in a set of runs with a total integrated luminosity of 1.1 fb^{-1}. The cross section is measured in the dilepton channel, the subset of ttbar events in which both top quarks decay through t -> Wb -> l nu b where l = e, mu, or tau. The lepton pair is reconstructed as one identified electron or muon and one isolated track. The use of an isolated track to identify the second lepton increases the ttbar acceptance, particularly for the case in which one W decays as W -> tau nu. The purity of the sample may be further improved at the cost of a reduction in the number of signal events, by requiring an identified b-jet. We present the results of measurements performed with and without the request of an identified b-jet. The former is the first published CDF result for which a b-jet requirement is added to the dilepton selection. In the CDF data there are 129 pretag lepton + track candidate events, of which 69 are tagged. With the tagging information, the sample is divided into tagged and untagged sub-samples, and a combined cross section is calculated by maximizing a likelihood. The result is sigma_{ttbar} = 9.6 +/- 1.2 (stat.) -0.5 +0.6 (sys.) +/- 0.6 (lum.) pb, assuming a branching ratio of BR(W -> ell nu) = 10.8% and a top mass of m_t = 175 GeV/c^2.
Resumo:
We present a measurement of the top quark mass with t-tbar dilepton events produced in p-pbar collisions at the Fermilab Tevatron $\sqrt{s}$=1.96 TeV and collected by the CDF II detector. A sample of 328 events with a charged electron or muon and an isolated track, corresponding to an integrated luminosity of 2.9 fb$^{-1}$, are selected as t-tbar candidates. To account for the unconstrained event kinematics, we scan over the phase space of the azimuthal angles ($\phi_{\nu_1},\phi_{\nu_2}$) of neutrinos and reconstruct the top quark mass for each $\phi_{\nu_1},\phi_{\nu_2}$ pair by minimizing a $\chi^2$ function in the t-tbar dilepton hypothesis. We assign $\chi^2$-dependent weights to the solutions in order to build a preferred mass for each event. Preferred mass distributions (templates) are built from simulated t-tbar and background events, and parameterized in order to provide continuous probability density functions. A likelihood fit to the mass distribution in data as a weighted sum of signal and background probability density functions gives a top quark mass of $165.5^{+{3.4}}_{-{3.3}}$(stat.)$\pm 3.1$(syst.) GeV/$c^2$.