909 resultados para 010406 Stochastic Analysis and Modelling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We shall examine a model, first studied by Brockwell et al. [Adv Appl Probab 14 (1982) 709.], which can be used to describe the longterm behaviour of populations that are subject to catastrophic mortality or emigration events. Populations can suffer dramatic declines when disease, such as an introduced virus, affects the population, or when food shortages occur, due to overgrazing or fluctuations in rainfall. However, perhaps surprisingly, such populations can survive for long periods and, although they may eventually become extinct, they can exhibit an apparently stationary regime. It is useful to be able to model this behaviour. This is particularly true of the ecological examples that motivated the present study, since, in order to properly manage these populations, it is necessary to be able to predict persistence times and to estimate the conditional probability distribution of population size. We shall see that although our model predicts eventual extinction, the time till extinction can be long and the stationary exhibited by these populations over any reasonable time scale can be explained using a quasistationary distribution. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consider a tandem system of machines separated by infinitely large buffers. The machines process a continuous flow of products, possibly at different speeds. The life and repair times of the machines are assumed to be exponential. We claim that the overflow probability of each buffer has an exponential decay, and provide an algorithm to determine the exact decay rates in terms of the speeds and the failure and repair rates of the machines. These decay rates provide useful qualitative insight into the behavior of the flow line. In the derivation of the algorithm we use the theory of Large Deviations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

enin et al. (2000) recently introduced the idea of similarity in the context of birth-death processes. This paper examines the extent to which their results can be extended to arbitrary Markov chains. It is proved that, under a variety of conditions, similar chains are strongly similar in a sense which is described, and it is shown that minimal chains are strongly similar if and only if the corresponding transition-rate matrices are strongly similar. A general framework is given for constructing families of strongly similar chains; it permits the construction of all such chains in the irreducible case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This note presents a method of evaluating the distribution of a path integral for Markov chains on a countable state space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivation: A consensus sequence for a family of related sequences is, as the name suggests, a sequence that captures the features common to most members of the family. Consensus sequences are important in various DNA sequencing applications and are a convenient way to characterize a family of molecules. Results: This paper describes a new algorithm for finding a consensus sequence, using the popular optimization method known as simulated annealing. Unlike the conventional approach of finding a consensus sequence by first forming a multiple sequence alignment, this algorithm searches for a sequence that minimises the sum of pairwise distances to each of the input sequences. The resulting consensus sequence can then be used to induce a multiple sequence alignment. The time required by the algorithm scales linearly with the number of input sequences and quadratically with the length of the consensus sequence. We present results demonstrating the high quality of the consensus sequences and alignments produced by the new algorithm. For comparison, we also present similar results obtained using ClustalW. The new algorithm outperforms ClustalW in many cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The two-node tandem Jackson network serves as a convenient reference model for the analysis and testing of different methodologies and techniques in rare event simulation. In this paper we consider a new approach to efficiently estimate the probability that the content of the second buffer exceeds some high level L before it becomes empty, starting from a given state. The approach is based on a Markov additive process representation of the buffer processes, leading to an exponential change of measure to be used in an importance sampling procedure. Unlike changes of measures proposed and studied in recent literature, the one derived here is a function of the content of the first buffer. We prove that when the first buffer is finite, this method yields asymptotically efficient simulation for any set of arrival and service rates. In fact, the relative error is bounded independent of the level L; a new result which is not established for any other known method. When the first buffer is infinite, we propose a natural extension of the exponential change of measure for the finite buffer case. In this case, the relative error is shown to be bounded (independent of L) only when the second server is the bottleneck; a result which is known to hold for some other methods derived through large deviations analysis. When the first server is the bottleneck, experimental results using our method seem to suggest that the relative error is bounded linearly in L.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a method of evaluating the expected value of a path integral for a general Markov chain on a countable state space. We illustrate the method with reference to several models, including birth-death processes and the birth, death and catastrophe process. (C) 2002 Elsevier Science Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The splitting method is a simulation technique for the estimation of very small probabilities. In this technique, the sample paths are split into multiple copies, at various stages in the simulation. Of vital importance to the efficiency of the method is the Importance Function (IF). This function governs the placement of the thresholds or surfaces at which the paths are split. We derive a characterisation of the optimal IF and show that for multi-dimensional models the natural choice for the IF is usually not optimal. We also show how nearly optimal splitting surfaces can be derived or simulated using reverse time analysis. Our numerical experiments illustrate that by using the optimal IF, one can obtain a significant improvement in simulation efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fixed-point roundoff noise in digital implementation of linear systems arises due to overflow, quantization of coefficients and input signals, and arithmetical errors. In uniform white-noise models, the last two types of roundoff errors are regarded as uniformly distributed independent random vectors on cubes of suitable size. For input signal quantization errors, the heuristic model is justified by a quantization theorem, which cannot be directly applied to arithmetical errors due to the complicated input-dependence of errors. The complete uniform white-noise model is shown to be valid in the sense of weak convergence of probabilistic measures as the lattice step tends to zero if the matrices of realization of the system in the state space satisfy certain nonresonance conditions and the finite-dimensional distributions of the input signal are absolutely continuous.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Admission controls, such as trunk reservation, are often used in loss networks to optimise their performance. Since the numerical evaluation of performance measures is complex, much attention has been given to finding approximation methods. The Erlang Fixed-Point (EFP) approximation, which is based on an independent blocking assumption, has been used for networks both with and without controls. Several more elaborate approximation methods which account for dependencies in blocking behaviour have been developed for the uncontrolled setting. This paper is an exploratory investigation of extensions and synthesis of these methods to systems with controls, in particular, trunk reservation. In order to isolate the dependency factor, we restrict our attention to a highly linear network. We will compare the performance of the resulting approximations against the benchmark of the EFP approximation extended to the trunk reservation setting. By doing this, we seek to gain insight into the critical factors in constructing an effective approximation. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with evaluating the performance of loss networks. Accurate determination of loss network performance can assist in the design and dimen- sioning of telecommunications networks. However, exact determination can be difficult and generally cannot be done in reasonable time. For these reasons there is much interest in developing fast and accurate approximations. We develop a reduced load approximation that improves on the famous Erlang fixed point approximation (EFPA) in a variety of circumstances. We illustrate our results with reference to a range of networks for which the EFPA may be expected to perform badly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent development of the Markov chain Monte Carlo (MCMC) technique is the emergence of MCMC samplers that allow transitions between different models. Such samplers make possible a range of computational tasks involving models, including model selection, model evaluation, model averaging and hypothesis testing. An example of this type of sampler is the reversible jump MCMC sampler, which is a generalization of the Metropolis-Hastings algorithm. Here, we present a new MCMC sampler of this type. The new sampler is a generalization of the Gibbs sampler, but somewhat surprisingly, it also turns out to encompass as particular cases all of the well-known MCMC samplers, including those of Metropolis, Barker, and Hastings. Moreover, the new sampler generalizes the reversible jump MCMC. It therefore appears to be a very general framework for MCMC sampling. This paper describes the new sampler and illustrates its use in three applications in Computational Biology, specifically determination of consensus sequences, phylogenetic inference and delineation of isochores via multiple change-point analysis.