964 resultados para 010103 Category Theory, K Theory, Homological Algebra
Resumo:
Energy gaps are crucial aspects of the electronic structure of finite and extended systems. Whereas much is known about how to define and calculate charge gaps in density-functional theory (DFT), and about the relation between these gaps and derivative discontinuities of the exchange-correlation functional, much less is known about spin gaps. In this paper we give density-functional definitions of spin-conserving gaps, spin-flip gaps and the spin stiffness in terms of many-body energies and in terms of single-particle (Kohn-Sham) energies. Our definitions are as analogous as possible to those commonly made in the charge case, but important differences between spin and charge gaps emerge already on the single-particle level because unlike the fundamental charge gap spin gaps involve excited-state energies. Kohn-Sham and many-body spin gaps are predicted to differ, and the difference is related to derivative discontinuities that are similar to, but distinct from, those usually considered in the case of charge gaps. Both ensemble DFT and time-dependent DFT (TDDFT) can be used to calculate these spin discontinuities from a suitable functional. We illustrate our findings by evaluating our definitions for the Lithium atom, for which we calculate spin gaps and spin discontinuities by making use of near-exact Kohn-Sham eigenvalues and, independently, from the single-pole approximation to TDDFT. The many-body corrections to the Kohn-Sham spin gaps are found to be negative, i.e., single-particle calculations tend to overestimate spin gaps while they underestimate charge gaps.
Resumo:
The integral of the Wigner function of a quantum-mechanical system over a region or its boundary in the classical phase plane, is called a quasiprobability integral. Unlike a true probability integral, its value may lie outside the interval [0, 1]. It is characterized by a corresponding selfadjoint operator, to be called a region or contour operator as appropriate, which is determined by the characteristic function of that region or contour. The spectral problem is studied for commuting families of region and contour operators associated with concentric discs and circles of given radius a. Their respective eigenvalues are determined as functions of a, in terms of the Gauss-Laguerre polynomials. These polynomials provide a basis of vectors in a Hilbert space carrying the positive discrete series representation of the algebra su(1, 1) approximate to so(2, 1). The explicit relation between the spectra of operators associated with discs and circles with proportional radii, is given in terms of the discrete variable Meixner polynomials.
Resumo:
Odorant-induced currents in mammalian olfactory receptor neurons have proved difficult to obtain reliably using conventional whole-cell recording. By using a mathematical model of the electrical circuit of the patch and rest-of-cell, we demonstrate how cell-attached patch measurements can be used to quantitatively analyze responses to odorants or a high (100 mM) K+ solution. High K+ induced an immediate current flux from cell to pipette, which was modeled as a depolarization of similar to 52 mV, close to that expected from the Nernst equation (56 mV), and no change in the patch conductance. By contrast, a cocktail of cAMP-stimulating odorants induced a current flux from pipette into cell following a significant (4-10 s) delay. This was modeled as an average patch conductance increase of 36 pS and a depolarization of 13 mV, Odorant-induced single channels had a conductance of 16 pS. In cells bathed with no Mg2+ and 0.25 mM Ca2+, odorants induced a current flow from cell to pipette, which was modeled as a patch conductance increase of similar to 115 pS and depolarization of similar to 32 mV, All these results are consistent with cAMP-gated cation channels dominating the odorant response, This approach, which provides useful estimates of odorant-induced voltage and conductance changes, is applicable to similar measurements in any small cells.
Resumo:
Considers the relevance of A.K. Sen’s theory of entitlements to the situation facing indigenous tribal people, its relationship to institutionalism, and to theories of property rights. Changing world views about the resource entitlements that should be given to local communities are outlined concentrating on the views expressed by the World Conservation Union (IUCN). These changing views have relevance for the resource entitlements of indigenous tribal communities and are reflected in differences in the policy approaches inherent in the Convention on International Trade in Endangered Species (CITES) and the more recent Convention on Biological Diversity. The latter embodies the view that provision of greater resource entitlements to local communities can provide economic incentives for nature conservation. There is a case for Indigenous Australians to be given greater rights to market the natural produce from their lands. Despite progress with land rights, they are not entitled to market much of the natural produce from their land. The socioeconomic status of Australian Aborigines is outlined. Their standard of living and their life expectancy are low by world standards and in comparison to other Australians. This is partly a result of historical events that have restricted their rights. These events are outlined briefly. Views differ about the appropriate development paths for Indigenous Australians and these are assessed. Concern on environmental and economic grounds is expressed about the view that the economic development of Australian Aboriginal communities would be accelerated by replacing their communal land titles by private land titles and encouraging Western-style agriculture and commercial development of their lands. Some comparisons are also made with the situation of India’s Tribals.
Resumo:
This study examines whether dissimilarity among employees that is based on their work status (i.e., whether they are temporary or internal workers) influences their organization-based self-esteem, their trust in and attraction toward their peers, and their altruism. A model that is based on social identity theory posits that work-status dissimilarity negatively influences each outcome variable and that the strength of this relationship varies depending on whether employees have temporary or internal status and the composition of their work groups. Results that are based on a survey of 326 employees (189 internal and 137 temporary) from 34 work groups, belonging to 2 organizations, indicate that work-status dissimilarity has a systematic negative effect only on outcomes related to internal workers when they work in temporary-worker-dominated groups.
Resumo:
We consider a possible technique for mode locking an atom laser, based on the generation of a dark soliton in a ring-shaped Bose-Einstein condensate, with repulsive atomic interactions. The soliton is a kink, with angular momentum per particle equal to (h) over bar /2. It emerges naturally when the condensate is stirred at the soliton velocity and cleansed with a periodic out coupler. The result is a replicating coherent field inside the atom laser, stabilized by topology. We give a numerical demonstration of the generation and stabilization of the soliton.
Resumo:
The vacancy solution theory of adsorption is re-formulated here through the mass-action law, and placed in a convenient framework permitting the development of thermodynamic ally consistent isotherms. It is shown that both the multisite Langmuir model and the classical vacancy solution theory expression are special cases of the more general approach when the Flory-Huggins activity coefficient model is used, with the former being the thermodynamically consistent result. The improved vacancy solution theory approach is further extended here to heterogeneous adsorbents by considering the pore-width dependent potential along with a pore size distribution. However, application of the model to numerous hydrocarbons as well as other adsorptives on microporous activated carbons shows that the multisite model has difficulty in the presence of a pore size distribution, because pores of different sizes can have different numbers of adsorbed layers and therefore different site occupancies. On the other hand, use of the classical vacancy solution theory expression for the local isotherm leads to good simultaneous fit of the data, while yielding a site diameter of about 0.257 nm, consistent with that expected for the potential well in aromatic rings on carbon pore surfaces. It is argued that the classical approach is successful because the Flory-Huggins term effectively represents adsorbate interactions in disguise. When used together with the ideal adsorbed solution theory the heterogeneous vacancy solution theory successfully predicts binary adsorption equilibria, and is found to perform better than the multisite Langmuir as well as the heterogeneous Langmuir model. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A new parafermionic algebra associated with the homogeneous space A(2)((2))/U(1) and its corresponding Z-algebra have been recently proposed. In this paper, we give a free boson representation of the A(2)((2)) parafermion algebra in terms of seven free fields. Free field realizations of the parafermionic energy-momentum tensor and screening currents are also obtained. A new algebraic structure is discovered, which contains a W-algebra type primary field with spin two. (C) 2002 Published by Elsevier Science B.V.