861 resultados para (geodetic) thickness or volume changes
Resumo:
Studies were conducted on biochemical changes in P. monodon and M. rosenbergii during ice storage. At the end of 10 days of ice storage, moisture and protein content of freshwater prawn slightly decreased from 78.34 to '77.35% and 18.46 to 17.10, respectively, while lipid and ash content slightly increased. The moisture, crude protein, lipid and ash content of one day ice stored tiger shrimp samples were 78.07, 18.06, 1.3 and 1.29% respectively. The protein composition of freshwater prawn immediately after killed were 36.51% sarcoplasmic, 44.63% myofibrillar, 8.12% stroma and 6.44% alkali soluble protein. At the end of 10 days of ice storage, sarcoplasmic and stroma protein slightly decreased while there was little or no changes observed in myofibrillar and alkali soluble protein. In case of one day ice stored tiger shrimp, the composition of protein were 35.32% sarcoplasmic, 46.29% myofibrillar, 7.86% stroma protein and 7.08% alkali soluble protein. At the end of 10 days in ice, sarcoplasmic protein decreased from 35.32% to 32.16% while there was slight change in other protein fractions. The TVB-N value of 1 day ice stored shrimp was 10.5 mg/100g of sample. It increased gradually with the lapse of storage period and at the end of 10 days storage in ice, the value increased up to 60 mg/100g sample. The tiger head on shrimp in ice storage were found organoleptic acceptable condition for 8 days and at that time the TVB-N values were 32.2 mg/100g which is slightly above the recommended limit for TVB-N for export.
Resumo:
Aims: Repeated exposure to heroin, a typical opiate, causes neuronal adaptation and may result in anatomical changes in specific brain regions, particularly the frontal and limbic cortices. The volume changes of gray matter (GM) of these brain regions, ho
Resumo:
植物功能生态学研究不仅提供了植物生理生态学与生态系统生态学的连接,还为植物种群生活史对策研究提供了材料。Westoby 等 (2002) 提出了利用植物功能性状变量的主导维度来确定和量化植物生活史的生态适应策略。在他们所提出四个主导维度中,叶大小-小枝大小是研究相对较少的一维;其内部各组分的关系、对环境的响应,以及与其它重要维度的关系,目前的理解非常有限。 本研究以贡嘎山不同海拔不同功能群物种为研究对象,采用种间比较和系统发生独立性比较等研究方法,系统研究了植物的功能特征及其相关性在不同生境及不同功能群间的差异,旨在分析不同功能群物种的叶大小-小枝大小的成本和收益。其研究结果将有助于我们理解植物生活史对策的进化,进而理解物种共存和维持物种多样性的机制。主要研究结果如下: 1. 叶大小-小枝大小关系 小枝茎横截面积与单叶面积和总叶面积均呈异速生长关系,即总叶面积和单叶面积的增加比茎横截面积的增加速度快。但是,总叶面积和叶片干重的增加却基本上与小枝茎干重的增加等速。系统发生独立性比较研究的结果与此相一致。表明,在某一给定的茎投入时,至少大叶大枝物种不比小叶小枝物种在支撑叶面积和叶片干重方面具有优势。同时,在某一给定的小枝茎投入时,常绿阔叶物种比落叶阔叶物种支撑更少的叶面积。在茎干重与总叶面积的关系中,落叶复叶物种比落叶单叶物种具有更高的y轴截距,表明复叶物种比单叶物种在展叶面积方面更有效。复叶物种与单叶物种相比,通常具有较大的叶大小和小枝大小。 2. 叶大小-叶数量关系 叶大小与数量间在不同的叶片习性、不同的叶片形态以及不同的生境类型的物种间均存在稳定的负的等速生长关系,且这种关系在系统发生独立性比较时依然成立。然而,在某一给定的出叶强度 (单位小枝的叶数量) 时,常绿阔叶物种比落叶物种具有更小的叶面积。而在给定体积基础上的出叶强度时,落叶复叶物种的叶面积显著大于落叶单叶物种,且复叶物种比单叶物种具有更大的叶大小和更小的出叶强度。但是,叶大小与数量间的关系在不同的海拔间并没有显著的差异。 3. 小枝大小-总叶面积关系 在不同的生活型或不同的生境下,小枝上总叶面积与茎干重和小枝干重均呈正的异速生长关系,且斜率显著小于1.0,表明小枝上总叶面积的增加都不能赶上小枝及茎大小的增加。这种“收益递减”表明随着小枝干重的增加,光截取的收益递减。此外,叶面积比 (总叶面积与小枝干重的比值) 与单叶干重呈显著负相关关系,系统发生独立性比较的结果与此相一致。根据以上结果,可以推测,大叶的物种在质量较好的生境中出现,而群落内部小枝茎的寿命较长的物种可以拥有较大的叶片。 4. 叶片色素浓度-LMA关系 随着海拔的升高,阔叶木本植物和草本植物的叶片色素浓度减少,叶绿素a/b和类胡萝卜素/叶绿素比值以及比叶重 (LMA) 增加。然而,在草本植物中的色素浓度、色素比值和LMA的变化比阔叶木本植物的更明显。同时,LMA与叶片色素浓度呈负相关关系,但是在落叶物种中的LMA对色素浓度的影响比常绿阔叶物种更强烈。总之,草本植物的叶片特征对海拔梯度的变化似乎比木本植物更敏感,LMA对叶片色素的保护作用在落叶物种中比在常绿阔叶物种显得更重要。这些结果表明不同生活型物种可能采取不同的保护机制来降低叶绿体器官的损伤和增加他们的碳获取能力。 Studies on plant functional ecology not only bridge plant eco-physiology and ecosystem functioning, but also enrich plant population biology. As pointed out by Westoby et al (2002), plant life history strategies can be identified and quantified by four leading dimensions of variations in plant functional traits, i.e., seed size/output, leaf mass per area and leaf life span, plant height, and leaf size-twig size. Compared to the other dimensions, the cost/benefit of the leaf size-twig size spectrum has scarcely been analyzed in relation to environmental gradients and life form types, and the adaptive significance of this spectrum is not fully understood. In the present study, the relationships between functional traits of plant twigs are determined for the species with different life forms along an altitudinal gradient of Gongga Mountain with both cross-species analysis and evolutionary divergence analysis. The primary objective of this study is to examine the cost/benefit of leaf size-twig size in plants. The study results are supposed to provide insights into the understanding of the mechanism of species coexistences. The results are shown in the following. 1. The relationship between leaf size and twig size Twig cross-sectional area allometrically scaled with both individual leaf area and total leaf area supported by the twigs. However, the increase in total lamina mass/area was generally proportional to the increase in stem mass. These correlations between trait variations were significant in both interspecies analysis and phylogenetically independent comparison (PIC) analysis, which indicated that thick-twigged/large-leaved species, at least, do not have an advantage in supporting leaf/lamina area and lamina mass for the same twig stem investment than thin-twigged/ small-leaved species. Meanwhile, the evergreen broad-leaved species supported a smaller leaf area for the same twig stem investment in terms of both cross-sectional area and stem mass than the deciduous species. The deciduous compound-leaved species have a higher y-intercept in the scaling relationship of twig stem mass versus total leaf area than the deciduous simple-leaved species, indicating that compound-leaved species were more efficient in displaying leaf area. The compound-leaved species were larger in both leaf size and twig size than their counterpart in the present study. 2. The relationship between leaf size and leaf number Significantly negative and isometric scaling relationships between leaf size and leafing intensity (leaf number per twig mass or volume) were found to be consistently conserved across species independent of leaf habit, leaf form and habitat type. The negative correlations between leaf size and leafing intensity were also observed across correlated evolutionary divergences. However, leaf area was smaller in the evergreen broad-leaved species at a given leafing intensity than in the deciduous species. The deciduous compound-leaved deciduous species were higher in leaf area than deciduous simple-laved species at a given volume-based leafing intensity. Moreover, the compound-leaved deciduous species were larger in leaf size but smaller in leafing intensity than their simple counterparts. No significant difference was found in the scaling relationships between altitudes. 3. The relationship between twig size and total leaf area Leaf area was found to scale positively and allometrically with both stem and twig mass (stem mass plus leaf mass) with slopes significantly smaller than 1.0, independent of life form and habitat type, indicating that the increase in total leaf area fails to keep pace with increasing twig size and stem size. This ‘diminishing returns’ suggests that the benefit of light intercept decreased with increasing twig mass. Moreover, the leaf area ratio (the ratio of total leaf area to stem or twig mass) correlated negatively with individual leaf mass. The results of PIC were consistent with the correlations. According to the results, it is speculated that large-leaved species may be favored when habitat is good and when stem longevity are long within community. 4. The relationship between leaf pigment concentrations and leaf mass per area With increasing altitude, the concentrations of pigments decreased, but the ratios of chlorophyll a/b and carotenoid/chlorophyll, and LMA increased, in both the broad-leaved woody species and herbaceous species groups. However, the changes in the pigment concentrations, ratios and LMA were more profound in the herbaceous species than in the woody species. In addition, pigment concentrations were negatively correlated with LMA in each life form type and in the pooled dataset. However, the LMA effect on leaf pigment concentrations was more profound in the deciduous species than in the evergreen braode-leaved species. In general, herbaceous species seemed more sensitive to the increasing altitude compared to woody species, and LMA seemed to be a more important mechanism for protecting leaf pigments in deciduous species than in evergreen broad-leaved species. These results suggested that the species with different life forms may employ different protective mechanisms to decrease the chloroplast apparatus damage and increase their carbon gain.
Resumo:
Ultrasonic absorption coefficients for ethylamine in heavy water (D2O) and in light water (H2O) have been measured in the frequency range from 0.8 to 220 MHz at 25 degrees C. A single relaxational process has been observed in these two kinds of solutions. From the concentration dependence of the ultrasonic relaxation parameters, and following the reaction mechanism proposed by Eigen et al. for ethylamine in H2O, the causes of the relaxations have been attributed to a perturbation of an equilibrium associated with a deuteron or proton transfer reaction. The rate and equilibrium constants have been estimated from deuterioxide or hydroxide ion concentration dependence of the relaxation frequency, and the kinetic isotope effects have been determined. In addition, the standard volume changes of the reactions have been calculated from the concentration dependence of the maximum absorption per wavelength, and the adiabatic compressibility has also been determined from the density and sound velocity for ethylamine in D2O and in H2O, respectively. These results are compared with those for propylamine and butylamine and are discussed in relation to the different kinetic properties between D2O and H2O, the reaction radii derived by Debye theory, and the structural properties of the reaction intermediate.
Resumo:
Sulige Gasfield, with a basically proven reserve as high as one trillion cubic meters, is one giant gas field discovered in China. The major gas -bearing layers are Upper Paleozoic strata with fluvial-lacustrine sedimentary facies. Generally, gas reservoirs in this field are characteristic by "five low" properties, namely low porosity, low permeability, low formation pressure, low productivity and low gas abundance. Reservoirs in this field also feature in a large distribution area, thin single sandbody thickness, poor reservoir physical properties, thin effective reservoir thickness, sharp horizontal and/or vertical changes in reservoir properties as well as poor connectivity between different reservoirs. Although outstanding achievements have been acquired in this field, there are still several problems in the evaluation and development of the reservoirs, such as: the relation between seismic attributes and reservoir property parameters is not exclusive, which yields more than one solution in using seismic attributes to predict reservoir parameters; the wave impedance distribution ranges of sandstone and mudstone are overlapped, means it is impossible to distinguish them through the application of post-stack impedance inversion; studies on seismic petrophysics, reservoir geophysical properties, wave reflection models and AVO features have a poor foundation, makes it difficult to recognize the specific differences between tight sandstone and gas-bearing sandstone and their distribution laws. These are the main reasons causing the low well drilling success rate and poor economic returns, which usually result in ineffective development and utilization of the field. Therefore, it is of great importance to perform studies on identification and prediction of effective reservoirs in low permeable sandstone strata. Taking the 2D and 3D multiwave-multicomponent seismic exploration block in Su6-Su5 area of Sulige field as a study area and He 8 member as target bed, analysis of the target bed sedimentary characteristics and logging data properties are performed, while criteria to identify effective reservoirs are determined. Then, techniques and technologies such as pre-stack seismic information (AVO, elastic impedance, wave-let absorption attenuation) and Gamma inversion, reservoir litological and geophysical properties prediction are used to increase the precision in identifying and predicting effective reservoirs; while P-wave and S-wave impedance, ratio of P/S wave velocities, rock elastic parameters and elastic impedance are used to perform sandstone gas-bearing property identification and gas reservoir thickness prediction. Innovative achievements are summarized as follows: 1. The study of this thesis is the first time that multiwave-multicomponent seismic data are used to identify and predict non-marine classic reservoirs in China. Through the application of multiwave-multicomponents seismic data and integration of both pre-stack and post-stack seismic data, a set of workflows and methods to perform high-precision prediction of effective reservoirs in low permeable sandstone is established systematically. 2. Four key techniques to perform effective reservoir prediction including AVO analysis, pre-stack elastic wave impedance inversion, elastic parameters inversion, and absorption attenuation analysis are developed, utilizing pre-stack seismic data to the utmost and increasing the correct rate for effective reservoir prediction to 83% from the former 67% with routine methods. 3. This thesis summarizes techniques and technologies used in the identification reservoir gas-bearing properties using multiwave-multicomponent seismic data. And for the first time, quantitative analysis on reservoir fluids such as oil, gas, and/or water are carried out, and characteristic lithology prediction techniques through the integration of pre-stack and post-stack seismic prediction techniques, common seismic inversion and rock elastic parameters inversion, as well as P-wave inversion and converted wave inversion is put forward, further increasing the correct rate of effective reservoir prediction in this area to 90%. 4. Ten seismic attribute parameters are selected in the 3D multi-wave area to perform a comprehensive evaluation on effective reservoirs using weighted-factor method. The results show that the first class effective reservoir covers an area of 10.08% of the study area, while the second and the third class reservoirs take 43.8% and 46% respectively, sharply increasing the success rate for appraisal and development wells.
Resumo:
The Dabie Mountains is a collisional orogenic belt between the North China and Yantze Continental plates. It is the eastern elongation of the Tongbai and Qingling orogen, and is truncated at its east end by the Tan-Lu fault. Jadeite-quartzite belt occurs in the eastern margin of UHPMB from the Dabie Mountains. Geochemical features indicate that the protoliths of the jadeite-quartzite and associated eclogite to be supracrustal rocks. The occurrence of micro-inclusions of coesite in jadeite and garnet confirmed that the continental crust can be subducted to great depth (8 0-100km) and then exhumed rapidly with its UHP mineral signature fairly preserved. Therefore, study of UHP jadeite-quartzite provides important information on subduction of continental crustal rocks and their exhumation histories, as well as the dynamics of plate tectonic processes at convergent margins. The purpose of this paper is to investigate the presence of hydrous component in the jadeite-quartzite belt, significant natural variations in the hydrous component content of UHP minerals and to discuss the role of water in petrology, geochemistry and micro-tectonic. On the basis of our previous studies, some new geological evidences have been found in the jadeite-quartzite belt by researches on petrography, mineralogy, micro-tectonic, hydrous component content of UHP minerals and combined with the study on rheology of materials using microprob, ER, TEM. By research and analysis of these phenomenona, the results obtained are as follows: 1. The existence of fluid during ultra-high pressure metamorphic process. Jadeites, omphacite, garnet, rutile, coesite and quartz from the jadeite-quartzite belt have been investigated by Fourier transform infrared spectrometer and TEM. Results show that all of these minerals contain trace amount of water which occur as hydroxyl and free-water in these minerals. The two-type hydrous components in UHP minerals are indicated stable in the mantle-depth. The results demonstrated that these ultra-high pressure metamorphic minerals, which were derived from continental crust protoliths, they could bring water into the mantle depth during the ultra-high pressure metamorphism. The clusters of water molecules within garnet are very important evidence of the existence of fluid during ultra-high pressure metamorphic process. It indicated that the metamorphic system was not "dry"during the ultra-high pressure stage. 2.The distribution of hydrous component in UHP minerals of jadeite-quartzite. The systematic distribution of hydrous components in UHP minerals are a strong indication that water in these minerals, are controlled by some factors and that the observed variations are not of a random nature. The distribution and concentration of hydrous component is not only correlated with composition of minerals, but also a function of geological environment. Therefore, the hydrous component in the minerals can not only take important part in the UHP metamorphic fluid during subduction of continental crustal rocks, but also their hydroxyl transported water molecules with decreasing pressure during their exhumation. And these water molecules can not only promote the deformation of jadeite through hydrolytic weakening, but also may be the part of the retrograde metamorphic fluid. 3.The role of water in the deformed UHP minerals. The jadeite, omphacite, garnet are strong elongated deformation in the jadeite-quartzite from the Dabie Mountains. They are (1) they are developed strong plastic deformation; (2) developed dislocation loop, dislocation wall; (3) the existence of clusters of water molecular in the garnet; and (4) the evolution of micero-tectonic from clusters of water molecular-dislocation loop in omphacite. That indicated that the water weakening controlled the mechanism of deformed minerals. Because the data presented here are not only the existence of clusters of water molecular in the garnet, but also developed strong elongation, high density of dislocation and high aspect ratios, adding microprobe data demonstrate the studied garnet crystals no compositional zoning. Therefore, this indicates that the diffusion process of the grain boundary mobility did not take place in these garnets. On the basis of above features, we consider that it can only be explained by plastic deformation of the garnets. The clusters of water molecules present in garnet was directly associated with mechanical weakening and inducing in plastic deformation of garnet by glissile dislocations. Investigate of LPO, strain analysis, TEM indicated that these clinopyroxenes developed strong elongation, high aspect ratios, and developed dislocation loop, dislocation wall and free dislocations. These indicated that the deformation mechanism of the clinopyroxenes plastically from the Dabie Mountains is dominant dislocation creep under the condition of the UHP metamorphic conditions. There are some bubbles with dislocation loops attached to them in the omphacite crystal. The bubbles attached to the dislocation loops sometimes form a string of bubble beads and some loops are often connected to one another via a common bubble. The water present in omphacite was directly associated with hydrolitic weakening and inducing in plastic deformation of omphacite by dislocations. The role of water in brittle deformation. Using microscopy, deformation has been identified as plastic deformation and brittle deformation in UHP minerals from the Dabie Mountains. The study of micro-tectonic on these minerals shows that the brittle deformation within UHP minerals was related to local stresses. The brittle deformation is interpreted as being caused by an interaction of high fluid pressure, volume changes. The hydroxyl within UHP minerals transported water molecules with decreasing pressure due to their exhumation. However, under eclogite facies conditions, the litho-static pressure is extreme, but a high fluid pressure will reduce the effective stress and make brittle deformation possible. The role of water in prograde metamorphism. Geochemical research on jadeite-quartzite and associated eclogite show that the protoliths of these rocks are supracrustal rocks. With increasing of temperature and pressure, the chlorite, biotite, muscovite was dehydrous reaction and released hydrous component during the subduction of continental lithosphere. The supracrustal rocks were transformed UHP rocks and formed UHP facies assemblage promotely by water introduction, and was retained in UHP minerals as hydrous component. The water within UHP minerals may be one of the retrograde metamorphic fluids. Petrological research on UHP rocks of jadeite-quartzite belt shows that there was existence of local fluids during early retrograde metamorphism. That are: (1) coronal textures and symplectite around relict UHP minerls crystals formed from UHP minerls by hydration reactions; (2) coronal textures of albite around ruitle; and (3) micro-fractures in jadeite or garnet were filled symplectite of Amp + PI + Mt. That indicated that the reactions of early retrograde metamorphism dependent on fluid introduction. These fluids not only promoted retrograde reaction of UHP minerals, but also were facilitate to diffuse intergranular and promote growth in minerals. Therefore, the hydrous component in the UHP minerals can not only take important part in the UHP metamorphic fluid during subduction of continental crustal rocks, but also their hydroxyl transport water molecules with decreasing pressure and may take part in the retrograde metamorphic fluid during their exhumation. 7. The role of water in geochemistry of UHP jadeite-quartzite. Geochemical research show that there are major, trace and rare earth element geochemical variations in the jadeite-quartzite from the Changpu district of Dabie Mountains, during retrograde metamorphic processes from the jadeite-quartzite--gneiss. The elements such as SiO_2、FeO、Ba、Zr、Ga、La、Ce、PTN Nd% Sm and Eu increase gradually from the jadeite-quartzite to retrograded jadeite-quartzite and to gneiss, whilst TiO_2. Na_2CK Fe2O_3、Rb、Y、Nb、Gd、Tb、Dy、Ho、Er、Tm、Yb decrease gradually. And its fO_2 keep nearly unchanged during early retrograde metamorphism, but decreased obviously during later retrograde metamorphism. These indicate that such changes are not only controlled by element transformation between mineralogical phases, but also closely relative to fluid-rock interaction in the decompression retrograde metamorphic processes.
Resumo:
An artificial muscle with strength and speed equal to that of a human muscle may soon be possible. Polymer gels exhibit abrubt volume changes in response to variations in their external conditions -- shrinking or swelling up to 1000 times their original volume. Through the conversion of chemical or electrical energy into mechanical work, a number of devices have already been constructed which produce forces up to 100N/cm2 and contraction rates on the order of a second. Through the promise of an artificial muscle is real, many fundamental physical and engineering questions remain before the extent or limit of these devices is known.
Resumo:
Chemical and biological processes, such as dissolution in gypsiferous sands and biodegradation in waste refuse, result in mass or particle loss, which in turn lead to changes in solid and void phase volumes and grading. Data on phase volume and grading changes have been obtained from oedometric dissolution tests on sand–salt mixtures. Phase volume changes are defined by a (dissolution-induced) void volume change parameter (Λ). Grading changes are interpreted using grading entropy coordinates, which allow a grading curve to be depicted as a single data point and changes in grading as a vector quantity rather than a family of distribution curves. By combining Λ contours with pre- to post-dissolution grading entropy coordinate paths, an innovative interpretation of the volumetric consequences of particle loss is obtained. Paths associated with small soluble particles, the loss of which triggers relatively little settlement but large increase in void ratio, track parallel to the Λ contours. Paths associated with the loss of larger particles, which can destabilise the sand skeleton, tend to track across the Λ contours.
Resumo:
Osmotic stress is a potent regulator of the normal function of cells that are exposed to osmotically active environments under physiologic or pathologic conditions. The ability of cells to alter gene expression and metabolic activity in response to changes in the osmotic environment provides an additional regulatory mechanism for a diverse array of tissues and organs in the human body. In addition to the activation of various osmotically- or volume-activated ion channels, osmotic stress may also act on the genome via a direct biophysical pathway. Changes in extracellular osmolality alter cell volume, and therefore, the concentration of intracellular macromolecules. In turn, intracellular macromolecule concentration is a key physical parameter affecting the spatial organization and pressurization of the nucleus. Hyper-osmotic stress shrinks the nucleus and causes it to assume a convoluted shape, whereas hypo-osmotic stress swells the nucleus to a size that is limited by stretch of the nuclear lamina and induces a smooth, round shape of the nucleus. These behaviors are consistent with a model of the nucleus as a charged core/shell structure pressurized by uneven partition of macromolecules between the nucleoplasm and the cytoplasm. These osmotically-induced alterations in the internal structure and arrangement of chromatin, as well as potential changes in the nuclear membrane and pores are hypothesized to influence gene transcription and/or nucleocytoplasmic transport. A further understanding of the biophysical and biochemical mechanisms involved in these processes would have important ramifications for a range of fields including differentiation, migration, mechanotransduction, DNA repair, and tumorigenesis.
Resumo:
Hypertension is a key risk factor for stroke, cardiovascular disease and dementia. Although the link between weight, sodium and hypertension is established in younger people, little is known about their inter-relationship in people beyond 80 years of age. Associations between blood pressure, anthropometric indices and sodium were investigated in 495 apparently healthy, community-living participants (age 90, SD 4.8; range 80–106), from the cross-sectional Belfast Elderly Longitudinal Free-living Aging STudy (BELFAST) study. In age-sex-adjusted logistic regression models, blood pressure =140/90 mmHg significantly associated with body mass index (BMI) [odds ratio (OR)?=?1.28/ kg/m2], with weight (OR?=?1.22/kg) approaching significance (P?=?0.07). In further age-sex-adjusted models, blood pressure above the 120/80 mmHg normotensive reference value significantly associated with BMI (OR?=?1.44/kg/m2), weight (OR?=?1.36/kg), skin-fold-thickness (OR?=?1.33/mm) and serum sodium (OR?=?1.37 mmol/l). In BELFAST participants over 80 years old, blood pressure =140/90 mmHg is associated with BMI, in apparently similar ways to younger groups.
Resumo:
Hippocampus and amygdala changes have been implicated in the pathophysiology and symptomatology of both schizophrenia (SCZ) and bipolar disorder (BD). However relationships between illness course, neuropathological changes and variations in symptomatology remain unclear. This investigation examined the associations between hippocampus and amygdala volumes and symptom dimensions in schizophrenia and bipolar disorder patients after their first episode of psychosis. Symptom severity was associated with decreases in hippocampus/amygdala complex volume across groups. In keeping with previous work bilateral hippocampus and amygdala volume reductions were also identified in the SCZ patients while in BD patients only evidence of amygdala inflation reached significance. The study concludes that there appear to be important relationships between volume changes in the hippocampus and amygdala and dimensions and severity of symptomatology in psychosis. Structural alterations are apparent in both SCZ and BD after first episode of psychosis but present differently in each illness and are more severe in SCZ.
Resumo:
Purpose: To describe associations between reticular pseudodrusen, individual characteristics, and retinal function.
Design: Cohort study.
Participants: We recruited 105 patients (age range, 52–93 years) who had advanced neovascular age-related macular degeneration (AMD) in only 1 eye from 3 clinical centers in Europe.
Methods: Minimum follow-up was 12 months. The eye selected for study was the fellow eye without advanced disease. Clinical measures of vision were distance visual acuity, near visual acuity, and results of the Smith-Kettlewell low-luminance acuity test (SKILL). Fundus imaging included color photography, red-free imaging, blue autofluorescence imaging, fluorescein angiography, indocyanine green angiography, and optical coherence tomography using standardized protocols. These were used to detect progression to neovascular AMD in the study eye during follow-up. All imaging outputs were graded for the presence or absence of reticular pseudodrusen (RPD) using a multimodal approach. Choroidal thickness was measured at the foveal center and at 2 other equidistant locations from the fovea (1500 μm) nasally and temporally. Metrics on retinal thickness and volume were obtained from the manufacturer-supplied automated segmentation readouts.
Main Outcome Measures: Presence of RPD, distance visual acuity, near visual acuity, SKILL score, choroidal thickness, retinal thickness, and retinal volume.
Results: Reticular pseudodrusen was found in 43 participants (41%) on 1 or more imaging method. The SKILL score was significantly worse in those with reticular drusen (mean score ± standard deviation [SD, 38±12) versus those without (mean score ± SD, 33±9) (P = 0.034). Parafoveal retinal thickness, parafoveal retinal volume, and all of the choroidal thickness parameters measured were significantly lower in those with reticular drusen than in those without. The presence of RPD was associated with development of neovascular AMD when corrected for age and sex (odds ratio, 5.5; 95% confidence interval, 1.1–28.8; P = 0.042). All participants in whom geographic atrophy developed during follow-up had visible RPD at baseline.
Conclusions: Significant differences in retinal and choroidal anatomic features, visual function, and risk factor profile exist in unilateral neovascular AMD patients with RPD compared with those without; therefore, such patients should be monitored carefully because of the risk of developing bilateral disease.
Resumo:
O desenvolvimento de betões de elevado desempenho, durante o início da década de 80, revelou que este tipo particular de materiais com base em cimento é susceptível a problemas de cura. São bem conhecidos os efeitos dos fenómenos autogéneos em sistemas de elevado desempenho com base em cimento, nomeadamente a fissuração em idade jovem. Esta é, aliás vista como a maior limitação no desenvolvimento de novos materiais com durabilidade superior. Desenvolvimentos recentes de métodos de cura interna provaram ser uma boa estratégia de mitigação dos efeitos da auto-dissecação destes sistemas, onde a presente tese ganha o seu espaço no tempo. Este estudo centra-se essencialmente em sistemas de elevado desempenho com base em cimento com cura interna através de partículas superabsorventes, dando particular importância à alteração de volume em idade jovem. Da análise mais aprofundada deste método, resultam algumas limitações na sua aplicabilidade, especialmente em sistemas modificados com sílica de fumo. Conclui-se que a natureza física e química dos polímeros superabsorventes pode afectar significativamente a eficiência da cura interna. Em adição, os mecanismos de cura interna são discutidos mais profundamente, sendo que para além dos mecanismos baseados em fenómenos físicos e químicos, parecem existir efeitos mecânicos significativos. Várias técnicas foram utilizadas durante o decorrer desta investigação, com o objectivo, para além da caracterização de certas propriedades dos materiais, de perseguir as questões deixadas em aberto pela comunidade internacional, relativamente aos mecanismos que fundamentam a explicação dos fenómenos autogéneos. Como exemplo, são apresentados os estudos sobre hidratação dos sistemas para avaliação do problema numa escala microscópica, em vez de macroscópica. Uma nova técnica de cura interna emerge da investigação, baseada na utilização de agregados finos como veiculo para mitigar parcialmente a retracção autogénea. Até aqui, esta técnica não encontra par em investigação anterior, mas a extensão da cura interna ou a eficácia na mitigação baseada neste conceito encontra algumas limitações. A significância desta técnica em prevenir a micro fissuração é um aspecto que está ainda em aberto, mas pode concluir-se que os agregados finos podem ser benéficos na redução dos efeitos da restrição localizada no sistema, reduzindo o risco de micro fissuração. A utilização combinada de partículas finas de agregado e polímeros super absorventes pode ter como consequência betão sem microfissuração, ou pelo menos com nanofissuração.
Resumo:
Tese de doutoramento, Medicina (Pediatria), Universidade de Lisboa, Faculdade de Medicina, 2013
Resumo:
Bonded unions are gaining importance in many fields of manufacturing owing to a significant number of advantages to the traditional fastening, riveting, bolting and welding techniques. Between the available bonding configurations, the single-lap joint is the most commonly used and studied by the scientific community due to its simplicity, although it endures significant bending due to the non-collinear load path, which negatively affects its load bearing capabilities. The use of material or geometric changes in single-lap joints is widely documented in the literature to reduce this handicap, acting by reduction of peel and shear peak stresses at the damage initiation sites in structures or alterations of the failure mechanism emerging from local modifications. In this work, the effect of hole drilling at the overlap on the strength of single-lap joints was analyzed experimentally with two main purposes: (1) to check whether or not the anchorage effect of the adhesive within the holes is more preponderant than the stress concentrations near the holes, arising from the sharp edges, and modification of the joints straining behaviour (strength improvement or reduction, respectively) and (2) picturing a real scenario on which the components to be bonded are modified by some external factor (e.g. retrofitting of decaying/old-fashioned fastened unions). Tests were made with two adhesives (a brittle and a ductile one) varying the adherend thickness and the number, layout and diameter of the holes. Experimental testing showed that the joints strength never increases from the un-modified condition, showing a varying degree of weakening, depending on the selected adhesive and hole drilling configuration.