980 resultados para (2,4-dichlorophenoxy)acetic acid
Resumo:
Murine macrophages activated by interferon-gamma and lipopolysaccharide become leishmanicidal through a process involving L-arginine-derived nitrogen oxidation products. Both nitrite secretion and parasite killing by activated macrophages were inhibited by 3-amino-1,2,4-triazole as well as the related compound, 3-amino-1,2,4-triazine. Moreover, NO synthase activity in cytosolic extracts of activated cells was inhibited by both compounds. 4-amino-1,2,4-triazole, an isomer of 3-amino-1,2,4-triazole, was without effect. Our results suggest that besides its known inhibitory effect on catalases and peroxidases, 3-amino-1,2,4-triazole is an inhibitor of NO synthase. The resemblance between the tautomeric form of 3-amino-1,2,4-triazole and the guanidino group of L-arginine, the natural substrate for NO synthase, might be responsible for the observed inhibition.
Resumo:
The antimicrobial metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) contributes to the capacity of Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soilborne pathogens. A 2, 4-DAPG-negative Tn5 insertion mutant of strain CHA0 was isolated, and the nucleotide sequence of the 4-kb genomic DNA region adjacent to the Tn5 insertion site was determined. Four open reading frames were identified, two of which were homologous to phlA, the first gene of the 2,4-DAPG biosynthetic operon, and to the phlF gene encoding a pathway-specific transcriptional repressor. The Tn5 insertion was located in an open reading frame, tentatively named phlH, which is not related to known phl genes. In wild-type CHA0, 2, 4-DAPG production paralleled expression of a phlA'-'lacZ translational fusion, reaching a maximum in the late exponential growth phase. Thereafter, the compound appeared to be degraded to monoacetylphloroglucinol by the bacterium. 2,4-DAPG was identified as the active compound in extracts from culture supernatants of strain CHA0 specifically inducing phlA'-'lacZ expression about sixfold during exponential growth. Induction by exogenous 2,4-DAPG was most conspicuous in a phlA mutant, which was unable to produce 2, 4-DAPG. In a phlF mutant, 2,4-DAPG production was enhanced severalfold and phlA'-'lacZ was expressed at a level corresponding to that in the wild type with 2,4-DAPG added. The phlF mutant was insensitive to 2,4-DAPG addition. A transcriptional phlA-lacZ fusion was used to demonstrate that the repressor PhlF acts at the level of transcription. Expression of phlA'-'lacZ and 2,4-DAPG synthesis in strain CHA0 was strongly repressed by the bacterial extracellular metabolites salicylate and pyoluteorin as well as by fusaric acid, a toxin produced by the pythopathogenic fungus Fusarium. In the phlF mutant, these compounds did not affect phlA'-'lacZ expression and 2, 4-DAPG production. PhlF-mediated induction by 2,4-DAPG and repression by salicylate of phlA'-'lacZ expression was confirmed by using Escherichia coli as a heterologous host. In conclusion, our results show that autoinduction of 2,4-DAPG biosynthesis can be countered by certain bacterial (and fungal) metabolites. This mechanism, which depends on phlF function, may help P. fluorescens to produce homeostatically balanced amounts of extracellular metabolites.
Resumo:
Incorporation of rice straw into the soil just before flooding for water-seeded rice can immobilize mineral nitrogen (N) and lead to the production of acetic acid harmful to the rice seedlings, which negatively affects grain yield. This study aimed to evaluate the formation of organic acids and variation in pH and to quantify the mineral N concentration in the soil as a function of different times of incorporation of rice straw or of ashes from burning the straw before flooding. The experiment was carried out in a greenhouse using an Inceptisol (Typic Haplaquept) soil. The treatments were as follows: control (no straw or ash); incorporation of ashes from previous straw burning; rice straw incorporated to drained soil 60 days before flooding; straw incorporated 30 days before flooding; straw incorporated 15 days before flooding and straw incorporated on the day of flooding. Experimental units were plastic buckets with 6.0 kg of soil. The buckets remained flooded throughout the trial period without rice plants. Soil samples were collected every seven days, beginning one day before flooding until the 13th week of flooding for determination of mineral N- ammonium (NH4+) and nitrate (NO3-). Soil solution pH and concentration of organic acids (acetic, propionic and butyric) were determined. All NO3- there was before flooding was lost in approximately two weeks of flooding, in all treatments. There was sigmoidal behavior for NH4+ formation in all treatments, i.e., ammonium ion concentration began to rise shortly after soil flooding, slightly decreased and then went up again. On the 91st day of flooding, the NH4+ concentrations in soil was 56 mg kg-1 in the control treatment, 72 mg kg-1 for the 60-day treatment, 73 mg kg-1 for the 30-day treatment and 53 mg kg-1 for the ash incorporation treatment. These ammonium concentrations correspond to 84, 108, 110 and 80 kg ha-1 of N-NH4+, respectively. When the straw was incorporated on the day of flooding or 15 days before, the concentration of N-NH4+ in the soil was 28 and 54 mg kg-1, equivalent to an accumulation of 42 and 81 kg ha-1 of N-NH4+, respectively. There was formation of acetic acid in which toxic concentrations were reached (7.2 mmol L-1) on the 15th day of flooding only for the treatment with straw incorporated on the day of flooding. The pH of the soil solution of all the treatments increased after flooding and this increase was faster in the treatments with incorporation of straw, followed by the ash treatment and then the control. After 60 days of flooding, however, the pH values were around 6.5 for all treatments, except for the control, which reached a pH of 6.3. Rice straw should be incorporated into the soil at least 30 days before flooding; otherwise, it may immobilize part of the mineral N and produce acetic acid in concentrations toxic to rice seedlings.
Resumo:
Degradation of unsaturated fatty acids through the peroxisomal beta-oxidation pathway requires the participation of auxiliary enzymes in addition to the enzymes of the core beta-oxidation cycle. The auxiliary enzyme delta(3,5),delta(2,4)-dienoyl-coenzyme A (CoA) isomerase has been well studied in yeast (Saccharomyces cerevisiae) and mammals, but no plant homolog had been identified and characterized at the biochemical or molecular level. A candidate gene (At5g43280) was identified in Arabidopsis (Arabidopsis thaliana) encoding a protein showing homology to the rat (Rattus norvegicus) delta(3,5),delta(2,4)-dienoyl-CoA isomerase, and possessing an enoyl-CoA hydratase/isomerase fingerprint as well as aspartic and glutamic residues shown to be important for catalytic activity of the mammalian enzyme. The protein, named AtDCI1, contains a peroxisome targeting sequence at the C terminus, and fusion of a fluorescent protein to AtDCI1 directed the chimeric protein to the peroxisome in onion (Allium cepa) cells. AtDCI1 expressed in Escherichia coli was shown to have delta(3,5),delta(2,4)-dienoyl-CoA isomerase activity in vitro. Furthermore, using the synthesis of polyhydroxyalkanoate in yeast peroxisomes as an analytical tool to study the beta-oxidation cycle, expression of AtDCI1 was shown to complement the yeast mutant deficient in the delta(3,5),delta(2,4)-dienoyl-CoA isomerase, thus showing that AtDCI1 is also appropriately targeted to the peroxisome in yeast and has delta(3,5),delta(2,4)-dienoyl-CoA isomerase activity in vivo. The AtDCI1 gene is expressed constitutively in several tissues, but expression is particularly induced during seed germination. Proteins showing high homology with AtDCI1 are found in gymnosperms as well as angiosperms belonging to the Monocotyledon or Dicotyledon classes.
Resumo:
Although the overall objective for undertaking this project is to help decide on the best way to produce CMA, the tasks to be performed deal primarily with acetic acid itself. The objectives of our part of this project can be restated here: A. Evaluate the cost and composition of potential low-cost fermentation substrates that are available in large quantity at central locations in Iowa. B. Compare the nutritional and physiological properties of a variety of homoacetogenic bacteria relative to acetic acid production, based on information available in the literature. C. Using both of these pools of information, evaluate the possibilities for use of substrates for acetic acid production that are significantly cheaper than the previous sugar, starch hydrolysate or whole corn based studies; also, compare the different acetogens encountered with the most commonly discussed acetogen, Clostridium thermoaceticum; arrive at conclusions on 1-3 of the best agriculture-derived substrates that should be further examined, and on 1-3 of the best organisms to evaluate experimentally. D. Collect experimental data at the tube and fermentor scale on 1-2 of the possibilities in C above. E. Comment on our understanding of acetic acid production possibilities from our perspective as microbiologists, and provide all this above information to Paul Peterschmidt for him to consider for his portion of this report. F. In addition, we would like to point out the possible advantage of examining the use of an agricultural by-product, corn steep liquor, as a direct, non-fermented feedstock for a non-acetic acid deicer.
Resumo:
Results of this study represent the first report of the effect of Naphthalene Acetic Acid (NAA) on the pre and post harvest quality of wax apple fruit. The wax apple trees were spray treated with 0, 5, 10 and 20 mg L-1 NAA under field conditions during 2008 to 2011. The experiments were carried out in Completely Randomized Design (CRD) with six replications. Leaf chlorophyll content, chlorophyll fluorescence, photosynthetic yield, net photosynthetic rate, drymatter content of leaves and total soluble solids and K+content of wax apple fruits were significantly increased after treatments with 10 mg L-1. Polygalacturonase activity significantly decreased with NAA treatments. The application of 5 mg L-1 NAA increased 27% more bud and reduced 42% less fruit drop compared to the control. In addition, higher protein and phosphate synthase activity of leaves, fruit set, fruit growth, larger fruit size and yield were recorded in NAA treated plants. In storage, treated fruits exhibited higher TSS and firmness and less weight loss, browning, titratable acidity, respiration and ethylene production than the control. It is concluded that spraying with 5 and 10 mg L-1 NAA once a week under field conditions produced better fruit growth and yield of the wax apple and maintained better fruit quality in postharvest storage.
Resumo:
The herbicides are being used in huge quantities for various porpouses. Once the herbicide finds its way into the environment, a major part of it comes in contact with soil. Humic substances are major organic constituents of soil. These substances may interact with herbicides in different modes and adsorption is probably the most important one. Adsorption will control the quantity of herbicide in the soil solution, and determines its persistence, leaching, mobility and bioavailability. In this work we studied the interaction between the herbicide 2,4D and soil in the presence and absence of organic matter. The methodology utilized for the determination of 2,4D was gas chromatography with eletron capture detector. The behavior of 2,4D was evaluated through Freundlich isotherms. It was verified that the herbicide 2,4D has a large adsorption in the humic acid .
Resumo:
The use of pesticides in agriculture presents some problems to ecosytems as a consequence of their remaining in the environment. Conventional methods for environmental decontamination sometimes just transfer these residues from one place to another. The use of gamma radiation from cobalt-60 to induce 2,4-D degradation in aqueous solution containing humic acid was studied. Results show that the herbicide is completely degraded after treatment with a 30 kGy dose. There were decreases in the degradation of the 2,4-D when humic acid was added at all doses. Some radiolytic products are proposed. The 2,4-D radiolytic yields (G) from 2,4-D were calculated.
Resumo:
This paper supplies a revision about the main techniques of extraction, clean-up and pre-concentration of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) in water and soil samples, as well as chromatographic methods and immune assays for its identification and quantification.
Resumo:
We have developed an easy method for the synthesis of thirteen compounds derived from 1,2,4-triazoles through a carboxylic acid and hydrazinophthalazine reaction, with a 75-85% yield mediated by the use of agents such as 1-ethyl-3-(3'-dimethylaminopropyl)-carbodiimide hydrochloride and 1-hydroxybenzotriazole. The operational simplicity of this method and the good yield of products make it valuable for the synthesis of new compounds with pharmacological activity.
Resumo:
The objective of this study was to evaluate the transport of one of the most toxic and best-selling herbicides in Brazil. The active ingredient 2,4-dichlorophenoxyacetic acid (2,4-D) was applied onto the surface of a tank-type lysimeter, filled with undisturbed soil, in Curitiba, Parana State. Samples of infiltration and runoff water were obtained during rain simulations. The concentrations of the active ingredient 2,4-D showed a rapid decrease in the environment, with mass losses of 29.12% by infiltration and 0.87% by runoff.
Resumo:
Drug trafficking and the introduction of new drugs onto the illicit market are one of the main challenges of the forensic community. In this study, the chemical profile of a new designer drug, 2-(4-iodine-2,5-dimethoxyphenyl)-n-[(2-methoxyphenyl)methyl]etamine or 25I-NBOMe was explored using thin layer chromatography (TLC), ultraviolet-visible spectrophotometry (UV-Vis), attenuated total reflection with Fourier transform infrared spectroscopy(ATR-FTIR), gas chromatography mass spectrometry (GC-MS) and electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR MS). First, the TLC technique was effective for identifying spots related to 25C-, 25B- and 25I-NBOMe compounds, all with the same retention factor, Rf ≈ 0.50. No spot was detected for 2,5-dimethoxy-4-bromoamphetamine, 2,5-Dimethoxy-4-chloroamphetamine or lysergic acid diethylamide compounds. ATR-FTIR preserved the physical-chemical properties of the material, whereas GC-MS and ESI-MS showed better analytical selectivity. ESI(+)FT-ICR MS was used to identify the exact mass (m/z428.1706 for the [M + H]+ ion), molecular formula (M = C18H22INO3), degree of unsaturation (DBE = 8) and the chemical structure (from collision induced dissociation, CID, experiments) of the 25I-NBOMe compound. Furthermore, the ATR-FTIR and CID results suggested the presence of isomers, where a second structure is proposed as an isomer of the 25I-NBOMe molecule.
Resumo:
The 2,4-dichlorophenoxyacetic acid, usually named 2,4-D is one of the most widely used herbicides in the world. Acute toxicity of 2,4-D herbicide was investigated through its effects on guppies (Poecilia vivipara Bloch et Schneider 1801). Fish were exposed to the herbicide at concentrations of 10, 20 and 40µl per liter of water for 24 hours to determine its effects on gills and liver epithelia. The estimated LC50 was 34.64µl of 2,4-D per liter of water. Histochemical analyses and Feulgen's reaction were conducted to detect glycoconjugates and DNA, respectively, in gills and liver epithelia. Histochemistry revealed qualitative variations of glycoconjugates present on mucous cells and granules. The four types of mucous cells contained neutral granules, acids, or both. Increasing amounts of syalomucins were observed from the control group to the group exposed to the highest concentration of 2,4-D, suggesting increased mucous viscosity and the formation of plaques that could inhibit gas exchange and osmoregulation. Lamellar fusion observed in the group exposed to 40µl of 2,4-D suggests a defense mechanism. Hepatocytes showed vacuolization in the 10 and 20µl/L groups. The 40 µl/L group showed normal hepatocytes as well as changed ones, many Ito cells, micronuclei, and nuclear swelling. These effects may be associated with toxicity or adaptative processes to cellular stress. The data from this study indicates the importance of assessing similar risks to aquatic species and suggests that Poecilia vivipara is an adequate biological model for analysis of environmental contamination.
Resumo:
Beef can be contaminated during the slaughter process, thus other methods, besides the traditional water washing, must be adopted to preserve meat safety. The objective of this study was to evaluate the effect of 2% acetic acid interventions on the reduction of indicator bacteria on beef carcasses at a commercial slaughterhouse in Mexico. Reduction was measured by the count of mesophilic aerobic bacteria (TPC), total coliform (TC), and fecal coliform (FC) (log CFU/ cm²). Among the different interventions tested, treatments combining acetic acid solution sprayed following carcass water washing had greater microbial reduction level. Acetic acid solution sprayed at low pressure and longer time (10-30 psi/ 60 s) reached higher TPC, TC, and FC reductions than that obtained under high pressure/ shorter time (1,700 psi/ 15 s; P<0.05). Exposure time significantly affected microbial reduction on carcasses. Acetic acid solution sprayed after carcass washing can be successfully used to control sources of indicator bacteria on beef carcasses under commercial conditions.
Resumo:
This research work has been planned with the intention of proving the absolute configuration of lactobacillc acid. During the course of this work, attempts have been made to synthesize cis-2-carboxycyclopropane- l-.acetic acid as,v,a suitable resolvable material. As the results were not satisfactory, the synthesis of ci,s-2-carboxycyclopropane-l-propionic acid has been alternatively attempted by ring opening of bicyclo- [4.1.~-heptan-2-onewithout much success. Attempts to resolve or prepare bicyclo[ 4.1.~-hePtan-2-one optically active are also reported. On the other hand, a complete scheme is described for the possible synthesis of optically active lactobacillic acid. If only bicyclo- ~.1.~ -heptan-2-one can be resolved or prepared optically active, this described scheme can be applied smoothly to the synthesis of enant~omeric lactobacillic acid.