859 resultados para year two
Resumo:
This data set contains aboveground plant biomass in 2006 (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) of the monoculture plots of a large grassland biodiversity experiment (the Jena Experiment). In the monoculture plots the biomass of the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species. These 60 species comprising the species pool of the Jena Experiment belong to four functional groups (grasses, legumes, tall and small herbs). Plots were sown in May 2002 and are since maintained by bi-annual weeding and mowing. Aboveground plant biomass was harvested twice in 2006 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the monocultures. This was done by clipping the vegetation at 3 cm above ground in 2 rectangles of 0.2 x 0.5 m per plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. excluding an outer edge of 0.5 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. The data for individual subsamples (i.e. rectangles) and the mean over samples for all biomass measures are given.
Resumo:
This data set contains aboveground plant biomass in 2007 (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) of the monoculture plots of a large grassland biodiversity experiment (the Jena Experiment). In the monoculture plots the biomass of the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species. These 60 species comprising the species pool of the Jena Experiment belong to four functional groups (grasses, legumes, tall and small herbs). Plots were sown in May 2002 and are since maintained by bi-annual weeding and mowing. Aboveground plant biomass was harvested twice in 2007 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the monocultures. This was done by clipping the vegetation at 3 cm above ground in 2 rectangles of 0.2 x 0.5 m per plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. excluding an outer edge of 0.5 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. The data for individual subsamples (i.e. rectangles) and the mean over samples for all biomass measures are given.
Resumo:
This data set contains measurements of ant abundance (number of individuals observed at the baits) and ant occurrence (binary data) measured in the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). Ants were sampled in 80 plots of the Main Experiment using baited traps in July 2006. In each plot two petri dishes were set on the ground, one received ~10g of Tuna the other ~10g of sugar (Sucrose). After 30min the occurrence (presence = 1 / absence = 0) and abundance (number) of ants at the two baits was recorded. Given is, per plot, the sum of ants attracted to the two different baits. In the Main Experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown in the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, or 4 functional groups). Plots were maintained by bi-annual weeding and mowing.
Resumo:
This data set contains measurements of ant abundance (number of individuals attracted to baits) and ant occurrence (binary data) measured in the Main Experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the Main Experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown in the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, or 4 functional groups). Plots were maintained by bi-annual weeding and mowing. Ants where sampled in 80 plots of the Main Experiment using baited traps end of July/ beginning of August 2013. Sampling took place 36 days after the end of a major flooding of the field site that lasted for several weeks (see DOI flood descriptor). In each plot two petri dishes were set on the ground, one received ~10g of Tuna the other ~10g of Honey. After 30min the occurrence (presence = 1 / absence = 0) and abundance (number) of ants at the two baits was recorded. Given is, per plot, the sum of ants attracted to the two different baits.
Resumo:
This data set contains aboveground plant biomass in 2008 (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) of the monoculture plots of a large grassland biodiversity experiment (the Jena Experiment). In the monoculture plots the biomass of the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species. One of the replicate plots per species was given up after the vegetation period of 2007 for all but the nine species belonging also to the so called dominance experiment in Jena. These nine species are: Alopecurus pratensis, Anthriscus sylvestris, Arrhenatherum elatius, Dactylis glomerata, Geranium pratense, Poa trivialis, Phleum pratense, Trifolium repens and Trifolium pratense.In 2008 plot size was reduced to 2.5 x 2.5 m. These 60 species comprising the species pool of the Jena Experiment belong to four functional groups (grasses, legumes, tall and small herbs). Plots were sown in May 2002 and are since maintained by bi-annual weeding and mowing. Aboveground plant biomass was harvested twice in 2008 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the monocultures. This was done by clipping the vegetation at 3 cm above ground in 2 rectangles of 0.2 x 0.5 m per plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. excluding an outer edge of 0.5 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. The data for individual subsamples (i.e. rectangles) and the mean over samples for all biomass measures are given.
Resumo:
This data set contains aboveground plant biomass in 2009 (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) of the monoculture plots of a large grassland biodiversity experiment (the Jena Experiment). In the monoculture plots the biomass of the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species. One of the replicate plots per species was given up after the vegetation period of 2007 for all but the nine species belonging also to the so called dominance experiment in Jena. These nine species are: Alopecurus pratensis, Anthriscus sylvestris, Arrhenatherum elatius, Dactylis glomerata, Geranium pratense, Poa trivialis, Phleum pratense, Trifolium repens and Trifolium pratense.In 2008 plot size was reduced to 2.5 x 2.5 m. These 60 species comprising the species pool of the Jena Experiment belong to four functional groups (grasses, legumes, tall and small herbs). Plots were sown in May 2002 and are since maintained by bi-annual weeding and mowing. Aboveground plant biomass was harvested twice in 2009 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the monocultures. This was done by clipping the vegetation at 3 cm above ground in 2 rectangles of 0.2 x 0.5 m per plot. The location of these rectangles was in the center of the plot area. The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. The data for individual subsamples (i.e. rectangles) and the mean over samples for all biomass measures are given.
Resumo:
This data set contains aboveground plant biomass in 2002 (Sown plant community; measured in biomass as dry weight) of the monoculture plots of a large grassland biodiversity experiment (the Jena Experiment). In the monoculture plots the biomass of the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species. These 60 species comprising the species pool of the Jena Experiment belong to four functional groups (grasses, legumes, tall and small herbs). Plots were sown in May 2002 and are since maintained by bi-annual weeding and mowing. Aboveground plant biomass was harvested twice in 2002 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the monocultures. This was done by clipping the vegetation at 3 cm above ground in 2 rectangles of 0.2 x 0.5 m per plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. excluding an outer edge of 0.5 m). The positions of the rectangles within plots were identical for all plots. From the harvested biomass only the separated biomass of the sown plant species was kept. All biomass was dried to constant weight (70°C, >= 48 h) and weighed. The data for individual subsamples (i.e. rectangles) and the mean over samples for all biomass measures are given.
Resumo:
This data set contains aboveground plant biomass in 2004 (Sown plant community, Weed plant community, Dead plant material, and Unidentified plant material; all measured in biomass as dry weight) of the monoculture plots of a large grassland biodiversity experiment (the Jena Experiment). In the monoculture plots the biomass of the sown plant community contains only a single species per plot and this species is a different one for each plot. Which species has been sown in which plot is stated in the plot information table for monocultures (see further details below). The monoculture plots of 3.5 x 3.5 m were established for all of the 60 plant species of the Jena Experiment species pool with two replicates per species. These 60 species comprising the species pool of the Jena Experiment belong to four functional groups (grasses, legumes, tall and small herbs). Plots were sown in May 2002 and are since maintained by bi-annual weeding and mowing. Aboveground plant biomass was harvested twice in 2004 just prior to mowing (during peak standing biomass in early June and in late August) on all experimental plots of the monocultures. This was done by clipping the vegetation at 3 cm above ground in 2 rectangles of 0.2 x 0.5 m per plot. The location of these rectangles was assigned prior to each harvest by random selection of coordinates within the core area of the plots (i.e. excluding an outer edge of 0.5 m). The positions of the rectangles within plots were identical for all plots. The harvested biomass was sorted into categories: sown plant species, weed plant species (species not sown at the particular plot), detached dead plant material (i.e., dead plant material in the data file), and remaining plant material that could not be assigned to any category (i.e., unidentified plant material in the data file). All biomass was dried to constant weight (70°C, >= 48 h) and weighed. The data for individual subsamples (i.e. rectangles) and the mean over samples for all biomass measures are given.
Resumo:
The ability to project oneself into the future to pre-experience an event is referred to as episodic future thinking (Atance & O’Neill, 2001). Only a relatively small number of studies have attempted to measure this ability in pre-school aged children (Atance & Meltzoff, 2005; Busby & Suddendorf, 2005ab, 2010; Russell, Alexis, & Clayton, 2010).Perhaps the most successful method is that used by Russell et al (2010). In this task, 3- to 5-year-olds played a game of blow football on one end of a table. After this children were asked to select tools that would enable them to play the same game tomorrow from the opposite, unreachable, side of the table. Results indicated that only 5-year-olds were capable of selecting the right objects for future use more often than would be expected by chance. Above-chance performance was observed in this older group even though most children failed the task because there was a low probability of selecting the correct 2 objects from a choice of 6 by chance.This study aimed to identify the age at which children begin to consistently pass this type of task. Three different tasks were designed in which children played a game on one side of a table, and then were asked to choose a tool to play a similar game on the other side of the table the next day. For example, children used a toy fishing rod to catch magnetic fish on one side of the table; playing the same game from the other side of the table required a different type of fishing rod. At test, children chose between just 2 objects: the tool they had already used, which would not work on the other side, and a different tool that they had not used before but which was suitable for the other side of the table. Experiment 1: Forty-eight 4-year-olds (M = 53.6 months, SD = 2.9) took part. These children were assigned to one of two conditions: a control condition (present-self) where the key test questions were asked in the present tense and an experimental condition (future-self) where the questions were in the future tense. Surprisingly, the results showed that both groups of 4-year-olds selected the correct tool at above chance levels (Table 1 shows the mean number of correct answers out of three). However, the children could see the apparatus when they answered the test questions and so perhaps answered them correctly without imagining the future. Experiment 2: Twenty-four 4-year-olds (M = 53.7, SD = 3.1) participated. Pre-schoolers in this study experienced one condition: future-self looking-away. In this condition children were asked to turn their backs to the games when answering the test questions, which were in the future tense. Children again performed above chance levels on all three games.Contrary to the findings of Russell et al. (2010), our results suggest that episodic future thinking skills could be present in 4-year-olds, assuming that this is what is measured by the tasks. Table 1. Mean number of correct answers across the three games in Experiments 1 and 2Experimental Conditions (N=24 in each condition)Mean CorrectStandardDeviationStatistical SignificanceExp. 1 (present-self, look) – 2 items2.750.68p < 0.001Exp. 1 (future-self, look) – 2 items 2.790.42p < 0.001Exp. 2 (future-self, away) – 2 items 2.330.64p < 0.001Exp. 3 (future-self away) – 3 items1.210.98p = 0.157
TP53 mutational status and cetuximab benefit in rectal cancer: 5-year results of the EXPERT-C trial.
Resumo:
In this updated analysis of the EXPERT-C trial we show that, in magnetic resonance imaging-defined, high-risk, locally advanced rectal cancer, adding cetuximab to a treatment strategy with neoadjuvant CAPOX followed by chemoradiotherapy, surgery, and adjuvant CAPOX is not associated with a statistically significant improvement in progression-free survival (PFS) and overall survival (OS) in both KRAS/BRAF wild-type and unselected patients. In a retrospective biomarker analysis, TP53 was not prognostic but emerged as an independent predictive biomarker for cetuximab benefit. After a median follow-up of 65.0 months, TP53 wild-type patients (n = 69) who received cetuximab had a statistically significant better PFS (89.3% vs 65.0% at 5 years; hazard ratio [HR] = 0.23; 95% confidence interval [CI] = 0.07 to 0.78; two-sided P = .02 by Cox regression) and OS (92.7% vs 67.5% at 5 years; HR = 0.16; 95% CI = 0.04 to 0.70; two-sided P = .02 by Cox regression) than TP53 wild-type patients who were treated in the control arm. An interaction between TP53 status and cetuximab effect was found (P <.05) and remained statistically significant after adjusting for statistically significant prognostic factors and KRAS.
Resumo:
BACKGROUND: Prostate cancer might have high radiation-fraction sensitivity that would give a therapeutic advantage to hypofractionated treatment. We present a pre-planned analysis of the efficacy and side-effects of a randomised trial comparing conventional and hypofractionated radiotherapy after 5 years follow-up.
METHODS: CHHiP is a randomised, phase 3, non-inferiority trial that recruited men with localised prostate cancer (pT1b-T3aN0M0). Patients were randomly assigned (1:1:1) to conventional (74 Gy delivered in 37 fractions over 7·4 weeks) or one of two hypofractionated schedules (60 Gy in 20 fractions over 4 weeks or 57 Gy in 19 fractions over 3·8 weeks) all delivered with intensity-modulated techniques. Most patients were given radiotherapy with 3-6 months of neoadjuvant and concurrent androgen suppression. Randomisation was by computer-generated random permuted blocks, stratified by National Comprehensive Cancer Network (NCCN) risk group and radiotherapy treatment centre, and treatment allocation was not masked. The primary endpoint was time to biochemical or clinical failure; the critical hazard ratio (HR) for non-inferiority was 1·208. Analysis was by intention to treat. Long-term follow-up continues. The CHHiP trial is registered as an International Standard Randomised Controlled Trial, number ISRCTN97182923.
FINDINGS: Between Oct 18, 2002, and June 17, 2011, 3216 men were enrolled from 71 centres and randomly assigned (74 Gy group, 1065 patients; 60 Gy group, 1074 patients; 57 Gy group, 1077 patients). Median follow-up was 62·4 months (IQR 53·9-77·0). The proportion of patients who were biochemical or clinical failure free at 5 years was 88·3% (95% CI 86·0-90·2) in the 74 Gy group, 90·6% (88·5-92·3) in the 60 Gy group, and 85·9% (83·4-88·0) in the 57 Gy group. 60 Gy was non-inferior to 74 Gy (HR 0·84 [90% CI 0·68-1·03], pNI=0·0018) but non-inferiority could not be claimed for 57 Gy compared with 74 Gy (HR 1·20 [0·99-1·46], pNI=0·48). Long-term side-effects were similar in the hypofractionated groups compared with the conventional group. There were no significant differences in either the proportion or cumulative incidence of side-effects 5 years after treatment using three clinician-reported as well as patient-reported outcome measures. The estimated cumulative 5 year incidence of Radiation Therapy Oncology Group (RTOG) grade 2 or worse bowel and bladder adverse events was 13·7% (111 events) and 9·1% (66 events) in the 74 Gy group, 11·9% (105 events) and 11·7% (88 events) in the 60 Gy group, 11·3% (95 events) and 6·6% (57 events) in the 57 Gy group, respectively. No treatment-related deaths were reported.
INTERPRETATION: Hypofractionated radiotherapy using 60 Gy in 20 fractions is non-inferior to conventional fractionation using 74 Gy in 37 fractions and is recommended as a new standard of care for external-beam radiotherapy of localised prostate cancer.
FUNDING: Cancer Research UK, Department of Health, and the National Institute for Health Research Cancer Research Network.
Resumo:
Recent evidence has highlighted the important role that number ordering skills play in arithmetic abilities (e.g., Lyons & Beilock, 2011). In fact, Lyons et al. (2014) demonstrated that although at the start of formal mathematics education number comparison skills are the best predictors of arithmetic performance, from around the age of 10, number ordering skills become the strongest numerical predictors of arithmetic abilities. In the current study we demonstrated that number comparison and ordering skills were both significantly related to arithmetic performance in adults, and the effect size was greater in the case of ordering skills. Additionally, we found that the effect of number comparison skills on arithmetic performance was partially mediated by number ordering skills. Moreover, performance on comparison and ordering tasks involving the months of the year was also strongly correlated with arithmetic skills, and participants displayed similar (canonical or reverse) distance effects on the comparison and ordering tasks involving months as when the tasks included numbers. This suggests that the processes responsible for the link between comparison and ordering skills and arithmetic performance are not specific to the domain of numbers. Finally, a factor analysis indicated that performance on comparison and ordering tasks loaded on a factor which included performance on a number line task and self-reported spatial thinking styles. These results substantially extend previous research on the role of order processing abilities in mental arithmetic.
Resumo:
BACKGROUND: -There are few contemporary data on the mortality and morbidity associated with rheumatic heart disease (RHD) or information on their predictors. We report the two year follow-up of individuals with RHD from 14 low and middle income countries in Africa and Asia.
METHODS: -Between January 2010 and November 2012, we enrolled 3343 patients from 25 centers in 14 countries and followed them for two years to assess mortality, congestive heart failure (CHF), stroke or transient ischemic attack (TIA), recurrent acute rheumatic fever (ARF), and infective endocarditis (IE).
RESULTS: -Vital status at 24 months was known for 2960 (88.5%) patients. Two thirds were female. Although patients were young (median age 28 years, interquartile range 18 to 40), the two year case fatality rate was high (500 deaths, 16.9%). Mortality rate was 116.3/1000 patient-years in the first year and 65.4/1000 patient-years in the second year. Median age at death was 28.7 years. Independent predictors of death were severe valve disease (hazard ratio (HR) 2.36, 95% confidence interval (CI) 1.80-3.11), CHF (HR 2.16, 95% CI 1.70-2.72), New York Heart Association functional class III/IV (HR 1.67, 95% CI 1.32-2.10), atrial fibrillation (AF) (HR 1.40, 95% CI 1.10-1.78) and older age (HR 1.02, 95% CI 1.01-1.02 per year increase) at enrolment. Post-primary education (HR 0.67, 95% CI 0.54-0.85) and female sex (HR 0.65, 95%CI 0.52-0.80) were associated with lower risk of death. 204 (6.9%) had new CHF (incidence, 38.42/1000 patient-years), 46 (1.6%) had a stroke or TIA (8.45/1000 patient-years), 19 (0.6%) had ARF (3.49/1000 patient-years), and 20 (0.7%) had IE (3.65/1000 patient-years). Previous stroke and older age were independent predictors of stroke/TIA or systemic embolism. Patients from low and lower-middle income countries had significantly higher age- and sex-adjusted mortality compared to patients from upper-middle income countries. Valve surgery was significantly more common in upper-middle income than in lower-middle- or low-income countries.
CONCLUSIONS: -Patients with clinical RHD have high mortality and morbidity despite being young; those from low and lower-middle income countries had a poorer prognosis associated with advanced disease and low education. Programs focused on early detection and treatment of clinical RHD are required to improve outcomes.
Resumo:
Background: It is important to assess the clinical competence of nursing students to gauge their educational needs. Competence can be measured by self-assessment tools; however, Anema and McCoy (2010) contend that currently available measures should be further psychometrically tested.
Aim: To test the psychometric properties of Nursing Competencies Questionnaire (NCQ) and Self-Efficacy in Clinical Performance (SECP) clinical competence scales.
Method: A non-randomly selected sample of n=248 2nd year nursing students completed NCQ, SECP and demographic questionnaires (June and September 2013). Mokken Scaling Analysis (MSA) was used to investigate structural validity and scale properties; convergent and discriminant validity and reliability were also tested for each scale.
Results: MSA analysis identified that the NCQ is a unidimensional scale with strong scale scalability coefficients Hs =0.581; but limited item rankability HT =0.367. The SECP scale MSA suggested that the scale could be potentially split into two unidimensional scales (SECP28 and SECP7), each with good/reasonable scalablity psychometric properties as summed scales but negligible/very limited scale rankability (SECP28: Hs = 0.55, HT=0.211; SECP7: Hs = 0.61, HT=0.049). Analysis of between cohort differences and NCQ/SECP scores produced evidence of discriminant and convergent validity; good internal reliability was also found: NCQ α = 0.93, SECP28 α = 0.96 and SECP7 α=0.89.
Discussion: In line with previous research further evidence of the NCQ’s reliability and validity was demonstrated. However, as the SECP findings are new and the sample small with reference to Straat and colleagues (2014), the SECP results should be interpreted with caution and verified on a second sample.
Conclusions: Measurement of perceived self-competence could start early in a nursing programme to support students’ development of clinical competence. Further testing of the SECP scale with larger nursing student samples from different programme years is indicated.
References:
Anema, M., G and McCoy, JK. (2010) Competency-Based Nursing Education: Guide to Achieving Outstanding Learner Outcomes. New York: Springer.
Straat, JH., van der Ark, LA and Sijtsma, K. (2014) Minimum Sample Size Requirements for Mokken Scale Analysis Educational and Psychological Measurement 74 (5), 809-822.
Resumo:
BACKGROUND: Even though physician rating websites (PRWs) have been gaining in importance in both practice and research, little evidence is available on the association of patients' online ratings with the quality of care of physicians. It thus remains unclear whether patients should rely on these ratings when selecting a physician. The objective of this study was to measure the association between online ratings and structural and quality of care measures for 65 physician practices from the German Integrated Health Care Network "Quality and Efficiency" (QuE). METHODS: Online reviews from two German PRWs were included which covered a three-year period (2011 to 2013) and included 1179 and 991 ratings, respectively. Information for 65 QuE practices was obtained for the year 2012 and included 21 measures related to structural information (N = 6), process quality (N = 10), intermediate outcomes (N = 2), patient satisfaction (N = 1), and costs (N = 2). The Spearman rank coefficient of correlation was applied to measure the association between ratings and practice-related information. RESULTS: Patient satisfaction results from offline surveys and the patients per doctor ratio in a practice were shown to be significantly associated with online ratings on both PRWs. For one PRW, additional significant associations could be shown between online ratings and cost-related measures for medication, preventative examinations, and one diabetes type 2-related intermediate outcome measure. There again, results from the second PRW showed significant associations with the age of the physicians and the number of patients per practice, four process-related quality measures for diabetes type 2 and asthma, and one cost-related measure for medication. CONCLUSIONS: Several significant associations were found which varied between the PRWs. Patients interested in the satisfaction of other patients with a physician might select a physician on the basis of online ratings. Even though our results indicate associations with some diabetes and asthma measures, but not with coronary heart disease measures, there is still insufficient evidence to draw strong conclusions. The limited number of practices in our study may have weakened our findings.