938 resultados para work function


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of either footprints or footwear impressions which have been recovered from a crime scene is a well known and well accepted part of forensic investigation. When this evidence is obtained by investigating officers, comparative analysis to a suspect’s evidence may be undertaken. This can be done either by the detectives or in some cases, podiatrists with experience in forensic analysis. Frequently asked questions of a podiatrist include; “What additional information should be collected from a suspect (for the purposes of comparison), and how should it be collected?” This paper explores the answers to these and related questions based on 20 years of practical experience in the field of crime scene analysis as it relates to podiatry and forensics. Elements of normal and abnormal foot function are explored and used to explain the high degree of variability in wear patterns produced by the interaction of the foot and footwear. Based on this understanding the potential for identifying unique features of the user and correlating this to footwear evidence becomes apparent. Standard protocols adopted by podiatrists allow for more precise, reliable, and valid results to be obtained from their analysis. Complex data sets are now being obtained by investigating officers and, in collaboration with the podiatrist; higher quality conclusions are being achieved. This presentation details the results of investigations which have used standard protocols to collect and analyse footwear and suspects of recent major crimes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to apply the principles of content, criterion, and construct validation to a new questionnaire specifically designed to measure foot-health status. One hundred eleven subjects completed two different questionnaires designed to measure foot health (the new Foot Health Status Questionnaire and the previously validated Foot Function Index) and underwent a clinical examination in order to provide data for a second-order confirmatory factor analysis. Presented herein is a psychometrically evaluated questionnaire that contains 13 items covering foot pain, foot function, footwear, and general foot health. The tool demonstrates a high degree of content, criterion, and construct validity and test-retest reliability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim. This paper is a report of a study to explore rural nurses' experiences of mentoring. Background. Mentoring has recently been proposed by governments, advocates and academics as a solution to the problem for retaining rural nurses in the Australian workforce. Action in the form of mentor development workshops has changed the way that some rural nurses now construct supportive relationships as mentoring. Method. A grounded theory design was used with nine rural nurses. Eleven semi-structured interviews were conducted in various states of Australia during 2004-2005. Situational analysis mapping techniques and frame analysis were used in combination with concurrent data generation and analysis and theoretical sampling. Findings. Experienced rural nurses cultivate novices through supportive mentoring relationships. The impetus for such relationships comes from their own histories of living and working in the same community, and this was termed 'live my work'. Rural nurses use multiple perspectives of self in order to manage their interactions with others in their roles as community members, consumers of healthcare services and nurses. Personal strategies adapted to local context constitute the skills that experienced rural nurses pass-on to neophyte rural nurses through mentoring, while at the same time protecting them through troubleshooting and translating local cultural norms. Conclusion. Living and working in the same community creates a set of complex challenges for novice rural nurses that are better faced with a mentor in place. Thus, mentoring has become an integral part of experienced rural nurses' practice to promote staff retention. © 2007 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More recently, lifespan development psychology models of adaptive development have been applied to the workforce to investigate ageing worker and lifespan issues. The current study uses the Learning and Development Survey (LDS) to investigate employee selection and engagement of learning and development goals and opportunities and constraints for learning at work in relation to demographics and career goals. It was found that mature age was associated with perceptions of preferential treatment of younger workers with respect to learning and development. Age was also correlated with several career goals. Findings suggest that younger workers’ learning and development options are better catered for in the workplace. Mature aged workers may compensate for unequal learning opportunities at work by studying for an educational qualification or seeking alternate job opportunities. The desire for a higher level job within the organization or educational qualification was linked to engagement in learning and development goals at work. It is suggested that an understanding of employee perceptions in the workplace in relation to goals and activities may be important in designing strategies to retain workers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stem cells have attracted tremendous interest in recent times due to their promise in providing innovative new treatments for a great range of currently debilitating diseases. This is due to their potential ability to regenerate and repair damaged tissue, and hence restore lost body function, in a manner beyond the body's usual healing process. Bone marrow-derived mesenchymal stem cells or bone marrow stromal cells are one type of adult stem cells that are of particular interest. Since they are derived from a living human adult donor, they do not have the ethical issues associated with the use of human embryonic stem cells. They are also able to be taken from a patient or other donors with relative ease and then grown readily in the laboratory for clinical application. Despite the attractive properties of bone marrow stromal cells, there is presently no quick and easy way to determine the quality of a sample of such cells. Presently, a sample must be grown for weeks and subject to various time-consuming assays, under the direction of an expert cell biologist, to determine whether it will be useful. Hence there is a great need for innovative new ways to assess the quality of cell cultures for research and potential clinical application. The research presented in this thesis investigates the use of computerised image processing and pattern recognition techniques to provide a quicker and simpler method for the quality assessment of bone marrow stromal cell cultures. In particular, aim of this work is to find out whether it is possible, through the use of image processing and pattern recognition techniques, to predict the growth potential of a culture of human bone marrow stromal cells at early stages, before it is readily apparent to a human observer. With the above aim in mind, a computerised system was developed to classify the quality of bone marrow stromal cell cultures based on phase contrast microscopy images. Our system was trained and tested on mixed images of both healthy and unhealthy bone marrow stromal cell samples taken from three different patients. This system, when presented with 44 previously unseen bone marrow stromal cell culture images, outperformed human experts in the ability to correctly classify healthy and unhealthy cultures. The system correctly classified the health status of an image 88% of the time compared to an average of 72% of the time for human experts. Extensive training and testing of the system on a set of 139 normal sized images and 567 smaller image tiles showed an average performance of 86% and 85% correct classifications, respectively. The contributions of this thesis include demonstrating the applicability and potential of computerised image processing and pattern recognition techniques to the task of quality assessment of bone marrow stromal cell cultures. As part of this system, an image normalisation method has been suggested and a new segmentation algorithm has been developed for locating cell regions of irregularly shaped cells in phase contrast images. Importantly, we have validated the efficacy of both the normalisation and segmentation method, by demonstrating that both methods quantitatively improve the classification performance of subsequent pattern recognition algorithms, in discriminating between cell cultures of differing health status. We have shown that the quality of a cell culture of bone marrow stromal cells may be assessed without the need to either segment individual cells or to use time-lapse imaging. Finally, we have proposed a set of features, that when extracted from the cell regions of segmented input images, can be used to train current state of the art pattern recognition systems to predict the quality of bone marrow stromal cell cultures earlier and more consistently than human experts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A constraints- based framework for understanding processes of movement coordination and control is predicated on a range of theoretical ideas including the work of Bernstein (1967), Gibson (1979), Newell (1986) and Kugler, Kelso & Turvey (1982). Contrary to a normative perspective that focuses on the production of idealized movement patterns to be acquired by children during development and learning (see Alain & Brisson, 1986), this approach formulates the emergence of movement co- ordination as a function of the constraints imposed upon each individual. In this framework, cognitive, perceptual and movement difficulties and disorders are considered to be constraints on the perceptual- motor system, and children’s movements are viewed as emergent functional adaptations to these constraints (Davids et al., 2008; Rosengren, Savelsbergh & van der Kamp, 2003). From this perspective, variability of movement behaviour is not viewed as noise or error to be eradicated during development, but rather, as essentially functional in facilitating the child to satisfy the unique constraints which impinge on his/her developing perceptual- motor and cognitive systems in everyday life (Davids et al., 2008). Recently, it has been reported that functional neurobiological variability is predicated on system degeneracy, an inherent feature of neurobiological systems which facilitates the achievement of task performance goals in a variety of different ways (Glazier & Davids, 2009). Degeneracy refers to the capacity of structurally different components of complex movement systems to achieve different performance outcomes in varying contexts (Tononi et al., 1999; Edelman & Gally, 2001). System degeneracy allows individuals with and without movement disorders to achieve their movement goals by harnessing movement variability during performance. Based on this idea, perceptual- motor disorders can be simply viewed as unique structural and functional system constraints which individuals have to satisfy in interactions with their environments. The aim of this chapter is to elucidate how the interaction of structural and functional organismic, and environmental constraints can be harnessed in a nonlinear pedagogy by individuals with movement disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Georgia’s ‘National Integrity Systems’ are the institutions, laws, procedures, practices and attitudes that encourage and support integrity in the exercise of power in modern Georgian society. Integrity systems function to ensure that power is exercised in a manner that is true to the values, purposes and duties for which that power is entrusted to, or held by, institutions and individual office-holders. This report presents the results of the Open Society Institute / Open Society – Georgia Foundation funded project Georgian National Integrity Systems Assessment (GNISA), conducted in 2005–2006 by Caucasus Institute for Peace, Democracy and Development, Transparency International Georgia, Georgian Young Lawyers Association, in close cooperation with Griffith University Institute for Ethics, Governance and Law (Australia), and Tiri Group (UK), into how different elements of integrity systems interact, which combinations of institutions and reforms make for a strong integrity system, and how Georgia’s integrity systems should evolve to ensure coherence, not chaos in the way public integrity is maintained. Nevertheless all participants of the research may not share some conclusions given in the GNISA report.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell based therapies require cells capable of self renewal and differentiation, and a prerequisite is the ability to prepare an effective dose of ex vivo expanded cells for autologous transplants. The in vivo identification of a source of physiologically relevant cell types suitable for cell therapies is therefore an integral part of tissue engineering. Bone marrow is the most easily accessible source of mesenchymal stem cells (MSCs), and harbours two distinct populations of adult stem cells; namely hematopoietic stem cells (HSCs) and bone mesenchymal stem cells (BMSCs). Unlike HSCs, there are yet no rigorous criteria for characterizing BMSCs. Changing understanding about the pluripotency of BMSCs in recent studies has expanded their potential application; however, the underlying molecular pathways which impart the features distinctive to BMSCs remain elusive. Furthermore, the sparse in vivo distribution of these cells imposes a clear limitation to their in vitro study. Also, when BMSCs are cultured in vitro there is a loss of the in vivo microenvironment which results in a progressive decline in proliferation potential and multipotentiality. This is further exacerbated with increased passage number, characterized by the onset of senescence related changes. Accordingly, establishing protocols for generating large numbers of BMSCs without affecting their differentiation potential is necessary. The principal aims of this thesis were to identify potential molecular factors for characterizing BMSCs from osteoarthritic patients, and also to attempt to establish culture protocols favourable for generating large number of BMSCs, while at the same time retaining their proliferation and differentiation potential. Previously published studies concerning clonal cells have demonstrated that BMSCs are heterogeneous populations of cells at various stages of growth. Some cells are higher in the hierarchy and represent the progenitors, while other cells occupy a lower position in the hierarchy and are therefore more committed to a particular lineage. This feature of BMSCs was made evident by the work of Mareddy et al., which involved generating clonal populations of BMSCs from bone marrow of osteoarthritic patients, by a single cell clonal culture method. Proliferation potential and differentiation capabilities were used to group cells into fast growing and slow growing clones. The study presented here is a continuation of the work of Mareddy et al. and employed immunological and array based techniques to identify the primary molecular factors involved in regulating phenotypic characteristics exhibited by contrasting clonal populations. The subtractive immunization (SI) was used to generate novel antibodies against favourably expressed proteins in the fast growing clonal cell population. The difference between the clonal populations at the transcriptional level was determined using a Stem Cell RT2 Profiler TM PCR Array which focuses on stem cell pathway gene expression. Monoclonal antibodies (mAb) generated by SI were able to effectively highlight differentially expressed antigenic determinants, as was evident by Western blot analysis and confocal microscopy. Co-immunoprecipitation, followed by mass spectroscopy analysis, identified a favourably expressed protein as the cytoskeletal protein vimentin. The stem cell gene array highlighted genes that were highly upregulated in the fast growing clonal cell population. Based on their functions these genes were grouped into growth factors, cell fate determination and maintenance of embryonic and neural stem cell renewal. Furthermore, on a closer analysis it was established that the cytoskeletal protein vimentin and nine out of ten genes identified by gene array were associated with chondrogenesis or cartilage repair, consistent with the potential role played by BMSCs in defect repair and maintaining tissue homeostasis, by modulating the gene expression pattern to compensate for degenerated cartilage in osteoarthritic tissues. The gene array also presented transcripts for embryonic lineage markers such as FOXA2 and Sox2, both of which were significantly over expressed in fast growing clonal populations. A recent groundbreaking study by Yamanaka et al imparted embryonic stem cell (ESCs) -like characteristic to somatic cells in a process termed nuclear reprogramming, by the ectopic expression of the genes Sox2, cMyc and Oct4. The expression of embryonic lineage markers in adult stem cells may be a mechanism by which the favourable behaviour of fast growing clonal cells is determined and suggests a possible active phenomenon of spontaneous reprogramming in fast growing clonal cells. The expression pattern of these critical molecular markers could be indicative of the competence of BMSCs. For this reason, the expression pattern of Sox2, Oct4 and cMyc, at various passages in heterogeneous BMSCs population and tissue derived cells (osteoblasts and chondrocytes), was investigated by a real-time PCR and immunoflourescence staining. A strong nuclear staining was observed for Sox2, Oct4 and cMyc, which gradually weakened accompanied with cytoplasmic translocation after several passage. The mRNA and protein expression of Sox2, Oct4 and cMyc peaked at the third passage for osteoblasts, chondrocytes and third passage for BMSCs, and declined with each subsequent passage, indicating towards a possible mechanism of spontaneous reprogramming. This study proposes that the progressive decline in proliferation potential and multipotentiality associated with increased passaging of BMSCs in vitro might be a consequence of loss of these propluripotency factors. We therefore hypothesise that the expression of these master genes is not an intrinsic cell function, but rather an outcome of interaction of the cells with their microenvironment; this was evident by the fact that when removed from their in vivo microenvironment, BMSCs undergo a rapid loss of stemness after only a few passages. One of the most interesting aspects of this study was the integration of factors in the culture conditions, which to some extent, mimicked the in vivo microenvironmental niche of the BMSCs. A number of studies have successfully established that the cellular niche is not an inert tissue component but is of prime importance. The total sum of stimuli from the microenvironment underpins the complex interplay of regulatory mechanisms which control multiple functions in stem cells most importantly stem cell renewal. Therefore, well characterised factors which affect BMSCs characteristics, such as fibronectin (FN) coating, and morphogens such as FGF2 and BMP4, were incorporated into the cell culture conditions. The experimental set up was designed to provide insight into the expression pattern of the stem cell related transcription factors Sox2, cMyc and Oct4, in BMSCs with respect to passaging and changes in culture conditions. Induction of these pluripotency markers in somatic cells by retroviral transfection has been shown to confer pluripotency and an ESCs like state. Our study demonstrated that all treatments could transiently induce the expression of Sox2, cMyc and Oct4, and favourably affect the proliferation potential of BMSCs. The combined effect of these treatments was able to induce and retain the endogenous nuclear expression of stem cell transcription factors in BMSCs over an extended number of in vitro passages. Our results therefore suggest that the transient induction and manipulation of endogenous expression of transcription factors critical for stemness can be achieved by modulating the culture conditions; the benefit of which is to circumvent the need for genetic manipulations. In summary, this study has explored the role of BMSCs in the diseased state of osteoarthritis, by employing transcriptional profiling along with SI. In particular this study pioneered the use of primary cells for generating novel antibodies by SI. We established that somatic cells and BMSCs have a basal level of expression of pluripotency markers. Furthermore, our study indicates that intrinsic signalling mechanisms of BMSCs are intimately linked with extrinsic cues from the microenvironment and that these signals appear to be critical for retaining the expression of genes to maintain cell stemness in long term in vitro culture. This project provides a basis for developing an “artificial niche” required for reversion of commitment and maintenance of BMSC in their uncommitted homeostatic state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive semidefinite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space - classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -using the labeled part of the data one can learn an embedding also for the unlabeled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method for learning the 2-norm soft margin parameter in support vector machines, solving an important open problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper "the importance of convexity in learning with squared loss" gave a lower bound on the sample complexity of learning with quadratic loss using a nonconvex function class. The proof contains an error. We show that the lower bound is true under a stronger condition that holds for many cases of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of learning problems can be cast as an Online Convex Game: on each round, a learner makes a prediction x from a convex set, the environment plays a loss function f, and the learner’s long-term goal is to minimize regret. Algorithms have been proposed by Zinkevich, when f is assumed to be convex, and Hazan et al., when f is assumed to be strongly convex, that have provably low regret. We consider these two settings and analyze such games from a minimax perspective, proving minimax strategies and lower bounds in each case. These results prove that the existing algorithms are essentially optimal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space -- classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semi-definite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -- using the labelled part of the data one can learn an embedding also for the unlabelled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method to learn the 2-norm soft margin parameter in support vector machines, solving another important open problem. Finally, the novel approach presented in the paper is supported by positive empirical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A range of terms is used in Australian higher education institutions to describe learning approaches and teaching models that provide students with opportunities to engage in learning connected to the world of work. The umbrella term currently being used widely is Work Integrated Learning (WIL). The common aim of approaches captured under the term WIL is to integrate discipline specific knowledge learnt in university setting with that learnt in the practice of work through purposefully designed curriculum. In endeavours to extend WIL opportunities for students, universities are currently exploring authentic learning experiences, both within and outside of university settings. Some universities describe these approaches as ‘real world learning’ or ‘professional learning’. Others refer to ‘social engagement’ with the community and focus on building social capital and citizenship through curriculum design that enables students to engage with the professions through a range of learning experiences. This chapter discusses the context for, the scope, purposes, characteristics and effectiveness of WIL across Australian universities as derived from a national scoping study. This study, undertaken in response to a high level of interest in WIL, involved data collection from academic and professional staff, and students at nearly all Australian universities. Participants in the study consistently reported the benefits, especially in relation to the student learning experience. Responses highlight the importance of strong partnerships between stakeholders to facilitate effective learning outcomes and a range of issues that shape the quality of approaches and models being adopted, in promoting professional learning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a rapidly changing world where new work patterns impact on our health, relationships and social fabric, it is critical that we reconsider the role universities could or should play in helping students prepare for the complexities of the 21st century. Efforts to respond to economic imperatives such as the skills shortage have seen a rush to embed work integrated and career development learning in the curriculum as well as a strengthening of the discourse that the university’s role is primarily to produce industry ready or ‘oven ready and self basting’ graduates (Atkins, 1999). This narrow focus on ‘giving industry what industry wants’ (Patrick, Peach & Pocknee, 2009) ignores the importance of helping students develop the types of skills and dispositions they will need. To enable students to thrive not just survive socially and economically in a radically unknowable world, where knowledge becomes obsolete, we need to be ready to develop new futures (Barnett, 2004). This paper considers the concept of ‘work’, the role it plays in our lives, and our aspirations to build sustainable, socially connected communities. We revisit the assumptions underlying the employability argument (Atkins, 1999) in the light of changing notions of work (Hagel, Seely Brown & Davison, 2010), and the need for higher education to contribute to a better and more sustainable society (Pocock, 2003). Specifically we present initiatives developed from work integrated learning (WIL) programs in the United Kingdom and Australia, where WIL programs are framed within the broader context of real world and life-wide curriculum (Jackson, 2010), and where transferable skills and elements of work-related learning programs prepare students for less certain job futures. Such approaches encourage students to take an agentic role (Billett & Pavlova, 2005) in selecting their work possibilities to develop resilience and capabilities to deal with new and challenging situations, assisting students to become who they want to be not just what they want to be. The theoretical and operational implications and challenges of shaping real world and life-wide curriculum will be investigated in more depth in the next phase of this research.