917 resultados para wavelet texture analysis
Resumo:
The Journal of Strategic Information Systems (JSIS) has been an international outlet for Information Systems research that focuses on strategic issues since 1991. This paper reports on an analysis of the research published in JSIS to date. The paper presents a preliminary classification system for research topics related to Strategic Information Systems into which all 316 JSIS research papers as at end 2009 are classified. Discussion on changing emphases in topics over time is provided, in the context of the editorial philosophy of the journal. The paper seeks to stimulate discussion on future directions for research in Strategic Information Systems.
Resumo:
Developing the social identity theory of leadership (e.g., [Hogg, M. A. (2001). A social identity theory of leadership. Personality and Social Psychology Review, 5, 184–200]), an experiment (N=257) tested the hypothesis that as group members identify more strongly with their group (salience) their evaluations of leadership effectiveness become more strongly influenced by the extent to which their demographic stereotype-based impressions of their leader match the norm of the group (prototypicality). Participants, with more or less traditional gender attitudes (orientation), were members, under high or low group salience conditions (salience), of non-interactive laboratory groups that had “instrumental” or “expressive” group norms (norm), and a male or female leader (leader gender). As predicted, these four variables interacted significantly to affect perceptions of leadership effectiveness. Reconfiguration of the eight conditions formed by orientation, norm and leader gender produced a single prototypicality variable. Irrespective of participant gender, prototypical leaders were considered more effective in high then low salience groups, and in high salience groups prototypical leaders were more effective than less prototypical leaders. Alternative explanations based on status characteristics and role incongruity theory do not account well for the findings. Implications of these results for the glass ceiling effect and for a wider social identity analysis of the impact of demographic group membership on leadership in small groups are discussed.
Resumo:
This article uses critical discourse analysis to analyse material shifts in the political economy of communications. It examines texts of major corporations to describe four key changes in political economy: (1) the separation of ownership from control; (2) the separation of business from industry; (3) the separation of accountability from responsibility; and (4) the subjugation of ‘going concerns’ by overriding concerns. The authors argue that this amounts to a political economic shift from traditional concepts of ‘capitalism’ to a new ‘corporatism’ in which the relationships between public and private, state and individual interests have become redefined and obscured through new discourse strategies. They conclude that the present financial and regulatory ‘crisis’ cannot be adequately resolved without a new analytic framework for examining the relationships between corporation, discourse and political economy.
Resumo:
Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.
Resumo:
In this article, we investigate the pay-performance relationship of soccer players using individual data from eight seasons of the German soccer league Bundesliga. We find a nonlinear pay-performance relationship, indicating that salary does indeed affect individual performance. The results further show that player performance is affected not only by absolute income level but also by relative income position. An additional analysis of the performance impact of team effects provides evidence of a direct impact of team-mate attributes on individual player performance.
Resumo:
A growing literature seeks to explain differences in individuals' self-reported satisfaction with their jobs. The evidence so far has mainly been based on cross-sectional data and when panel data have been used, individual unobserved heterogeneity has been modelled as an ordered probit model with random effects. This article makes use of longitudinal data for Denmark, taken from the waves 1995-1999 of the European Community Household Panel, and estimates fixed effects ordered logit models using the estimation methods proposed by Ferrer-i-Carbonel and Frijters (2004) and Das and van Soest (1999). For comparison and testing purposes a random effects ordered probit is also estimated. Estimations are carried out separately on the samples of men and women for individuals' overall satisfaction with the jobs they hold. We find that using the fixed effects approach (that clearly rejects the random effects specification), considerably reduces the number of key explanatory variables. The impact of central economic factors is the same as in previous studies, though. Moreover, the determinants of job satisfaction differ considerably between the genders, in particular once individual fixed effects are allowed for.
Resumo:
The thermal analysis of euchroite shows two mass loss steps in the temperature range 100 to 105°C and 185 to 205°C. These mass loss steps are attributed to dehydration and dehydroxylation of the mineral. Hot stage Raman spectroscopy (HSRS) has been used to study the thermal stability of the mineral euchroite, a mineral involved in a complex set of equilibria between the copper hydroxy arsenates: euchroite Cu2(AsO4)(OH).3H2O → olivenite Cu2(AsO4)(OH) → strashimirite Cu8(AsO4)4(OH)4.5H2O → arhbarite Cu2Mg(AsO4)(OH)3. Hot stage Raman spectroscopy inolves the collection of Raman spectra as a function of the temperature. HSRS shows that the mineral euchroite decomposes between 125 and 175 °C with the loss of water. At 125 °C, Raman bands are observed at 858 cm-1 assigned to the ν1 AsO43- symmetric stretching vibration and 801, 822 and 871 cm-1 assigned to the ν3 AsO43- (A1) antisymmetric stretching vibration. A distinct band shift is observed upon heating to 275 °C. At 275 °C the four Raman bands are resolved at 762, 810, 837 and 862 cm-1. Further heating results in the diminution of the intensity in the Raman spectra and this is attributed to sublimation of the arsenate mineral. Hot stage Raman spectroscopy is most useful technique for studying the thermal stability of minerals especially when only very small amounts of mineral are available.
Resumo:
The transition of cubic indium hydroxide to cubic indium oxide has been studied by thermogravimetric analysis complimented with hot stage Raman spectroscopy. Thermal analysis shows the transition of In(OH)3 to In2O3 occurs at 219°C. The structure and morphology of In(OH)3 synthesised using a soft chemical route at low temperatures was confirmed by X-ray diffraction and scanning electron microscopy. A topotactical relationship exists between the micro/nano-cubes of In(OH)3 and In2O3. The Raman spectrum of In(OH)3 is characterised by an intense sharp band at 309 cm-1 attributed to ν1 In-O symmetric stretching mode, bands at 1137 and 1155 cm-1 attributed to In-OH δ deformation modes, bands at 3083, 3215, 3123 and 3262 cm-1 assigned to the OH stretching vibrations. Upon thermal treatment of In(OH)3 new Raman bands are observed at 125, 295, 488 and 615 cm-1 attributed to In2O3. Changes in the structure of In(OH)3 with thermal treatment is readily followed by hot stage Raman spectroscopy.
Thermal analysis of synthetic reevesite and cobalt substituted reevesite (Ni,Co)6Fe2(OH)16(CO3)•4H2O
Resumo:
The mineral reevesite and the cobalt substituted reevesite have been synthesised. The d(003) spacings of the minerals ranged from 7.54 to 7.95 Å. The maximum d(003) value occurred at around Ni:Co 0.4:0.6. This maximum in interlayer distance is proposed to be due to a greater number of carbonate anions and water molecules intercalated into the structure. The stability of the reevesite and cobalt doped reevesite was determined by thermogravimetric analysis. The maximum temperature of the reevesite occurs for the unsubstituted reevesite and is around 220°C. The effect of cobalt substitution results in a decrease in thermal stability of the reevesites. Four thermal decomposition steps are observed and are attributed to dehydration, dehydroxylation and decarbonation, decomposition of the formed carbonate and oxygen loss at ~807 °C. A mechanism for the thermal decomposition of the reevesite and the cobalt substituted reevesite is proposed.
Resumo:
The main objective of this PhD was to further develop Bayesian spatio-temporal models (specifically the Conditional Autoregressive (CAR) class of models), for the analysis of sparse disease outcomes such as birth defects. The motivation for the thesis arose from problems encountered when analyzing a large birth defect registry in New South Wales. The specific components and related research objectives of the thesis were developed from gaps in the literature on current formulations of the CAR model, and health service planning requirements. Data from a large probabilistically-linked database from 1990 to 2004, consisting of fields from two separate registries: the Birth Defect Registry (BDR) and Midwives Data Collection (MDC) were used in the analyses in this thesis. The main objective was split into smaller goals. The first goal was to determine how the specification of the neighbourhood weight matrix will affect the smoothing properties of the CAR model, and this is the focus of chapter 6. Secondly, I hoped to evaluate the usefulness of incorporating a zero-inflated Poisson (ZIP) component as well as a shared-component model in terms of modeling a sparse outcome, and this is carried out in chapter 7. The third goal was to identify optimal sampling and sample size schemes designed to select individual level data for a hybrid ecological spatial model, and this is done in chapter 8. Finally, I wanted to put together the earlier improvements to the CAR model, and along with demographic projections, provide forecasts for birth defects at the SLA level. Chapter 9 describes how this is done. For the first objective, I examined a series of neighbourhood weight matrices, and showed how smoothing the relative risk estimates according to similarity by an important covariate (i.e. maternal age) helped improve the model’s ability to recover the underlying risk, as compared to the traditional adjacency (specifically the Queen) method of applying weights. Next, to address the sparseness and excess zeros commonly encountered in the analysis of rare outcomes such as birth defects, I compared a few models, including an extension of the usual Poisson model to encompass excess zeros in the data. This was achieved via a mixture model, which also encompassed the shared component model to improve on the estimation of sparse counts through borrowing strength across a shared component (e.g. latent risk factor/s) with the referent outcome (caesarean section was used in this example). Using the Deviance Information Criteria (DIC), I showed how the proposed model performed better than the usual models, but only when both outcomes shared a strong spatial correlation. The next objective involved identifying the optimal sampling and sample size strategy for incorporating individual-level data with areal covariates in a hybrid study design. I performed extensive simulation studies, evaluating thirteen different sampling schemes along with variations in sample size. This was done in the context of an ecological regression model that incorporated spatial correlation in the outcomes, as well as accommodating both individual and areal measures of covariates. Using the Average Mean Squared Error (AMSE), I showed how a simple random sample of 20% of the SLAs, followed by selecting all cases in the SLAs chosen, along with an equal number of controls, provided the lowest AMSE. The final objective involved combining the improved spatio-temporal CAR model with population (i.e. women) forecasts, to provide 30-year annual estimates of birth defects at the Statistical Local Area (SLA) level in New South Wales, Australia. The projections were illustrated using sixteen different SLAs, representing the various areal measures of socio-economic status and remoteness. A sensitivity analysis of the assumptions used in the projection was also undertaken. By the end of the thesis, I will show how challenges in the spatial analysis of rare diseases such as birth defects can be addressed, by specifically formulating the neighbourhood weight matrix to smooth according to a key covariate (i.e. maternal age), incorporating a ZIP component to model excess zeros in outcomes and borrowing strength from a referent outcome (i.e. caesarean counts). An efficient strategy to sample individual-level data and sample size considerations for rare disease will also be presented. Finally, projections in birth defect categories at the SLA level will be made.
Resumo:
Many studies in the area of project management and social networks have identified the significance of project knowledge transfer within and between projects. However, only few studies have examined the intra- and inter-projects knowledge transfer activities. Knowledge in projects can be transferred via face-to-face interactions on the one hand, and via IT-based tools on the other. Although companies have allocated many resources to the IT tools, it has been found that they are not always effectively utilised, and people prefer to look for knowledge using social face-to-face interactions. This paper explores how to effectively leverage two alternative knowledge transfer techniques, face-to-face and IT-based tools to facilitate knowledge transfer and enhance knowledge creation for intra- and inter-project knowledge transfer. The paper extends the previous research on the relationships between and within teams by examining the project’s external and internal knowledge networks concurrently. Social network qualitative analysis, using a case study within a small-medium enterprise, was used to examine the knowledge transfer activities within and between projects, and to investigate knowledge transfer techniques. This paper demonstrates the significance of overlapping employees working simultaneously on two or more projects and their impact on facilitating knowledge transfer between projects within a small/medium organisation. This research is also crucial to gaining better understanding of different knowledge transfer techniques used for intra- and inter-project knowledge exchange. The research provides recommendations on how to achieve better knowledge transfer within and between projects in order to fully utilise a project’s knowledge and achieve better project performance.
Resumo:
This thesis critically analyses sperm donation practices from a child-centred perspective. It examines the effects, both personal and social, of disrupting the unity of biological and social relatedness in families affected by donor conception. It examines how disruption is facilitated by a process of mediation which is detailed using a model provided by Sunderland (2002). This model identifies mediating movements - alienation, translation, re-contextualisation and absorption - which help to explain the powerful and dominating material, and social and political processes which occur in biotechnology, or in reproductive technology in this case. The understanding of such movements and mediation of meanings is inspired by the complementary work of Silverstone (1999) and Sunderland. This model allows for a more critical appreciation of the movement of meaning from previously inalienable aspects of life to alienable products through biotechnology (Sunderland, 2002). Once this mediation in donor conception is subjected to critical examination here, it is then approached from different angles of investigation. The thesis posits that two conflicting notions of the self are being applied to fertility-frustrated adults and the offspring of reproductive interventions. Adults using reproductive interventions receive support to maximise their genetic continuity, but in so doing they create and dismiss the corresponding genetic discontinuity produced for the offspring. The offspring’s kinship and identity are then framed through an experimental postmodernist notion, presenting them as social rather than innate constructs. The adults using the reproductive intervention, on the other hand, have their identity and kinship continuity framed and supported as normative, innate, and based on genetic connection. This use of shifting frameworks is presented as unjust and harmful, creating double standards and a corrosion of kinship values, connection and intelligibility between generations; indeed, it is put forward as adult-centric. The analysis of other forms of human kinship dislocation provided by this thesis explores an under-utilised resource which is used to counter the commonly held opinion that any disruption of social and genetic relatedness for donor offspring is insignificant. The experiences of adoption and the stolen generations are used to inform understanding of the personal and social effects of such kinship disruption and potential reunion for donor offspring. These examples, along with laws governing international human rights, further strengthen the appeal here for normative principles and protections based on collective knowledge and standards to be applied to children of reproductive technology. The thesis presents the argument that the framing and regulation of reproductive technology is excessively influenced by industry providers and users. The interests of these parties collide with and corrode any accurate assessments and protections afforded to the children of reproductive technology. The thesis seeks to counter such encroachments and concludes by presenting these protections, frameworks, and human experiences as resources which can help to address the problems created for the offspring of such reproductive interventions, thereby illustrating why these reproductive interventions should be discontinued.
Resumo:
Background: Apart from promoting physical recovery and assisting in activities of daily living, a major challenge in stroke rehabilitation is to minimize psychosocial morbidity and to promote the reintegration of stroke survivors into their family and community. The identification of key factors influencing long-term outcome are essential in developing more effective rehabilitation measures for reducing stroke-related morbidity. The aim of this study was to test a theoretical model of predictors of participation restriction which included the direct and indirect effects between psychosocial outcomes, physical outcome, and socio-demographic variables at 12 months after stroke.--------- Methods: Data were collected from 188 stroke survivors at 12 months following their discharge from one of the two rehabilitation hospitals in Hong Kong. The settings included patients' homes and residential care facilities. Path analysis was used to test a hypothesized model of participation restriction at 12 months.---------- Results: The path coefficients show functional ability having the largest direct effect on participation restriction (β = 0.51). The results also show that more depressive symptoms (β = -0.27), low state self-esteem (β = 0.20), female gender (β = 0.13), older age (β = -0.11) and living in a residential care facility (β = -0.12) have a direct effect on participation restriction. The explanatory variables accounted for 71% of the variance in explaining participation restriction at 12 months.---------- Conclusion: Identification of stroke survivors at risk of high levels of participation restriction, depressive symptoms and low self-esteem will assist health professionals to devise appropriate rehabilitation interventions that target improving both physical and psychosocial functioning.
Resumo:
- Background Substance use is common among gay/bisexual men and is associated with significant health risks (e.g. HIV transmission). The consequences of substance use, across the range of substances commonly used, have received little attention. The purpose of this study is to map participant’s beliefs about the effects of substance use to inform prevention, health promotion and clinical interventions. - Methods Participants were interviewed about experiences regarding their substance use and recruited through medical and sexual health clinics. Data were collected though a consumer panel and individual interviews. Responses regarding perceived consequences of substance use were coded using Consensual Qualitative Research (CQR) methodology. - Results Most participants reported lifetime use of alcohol, cannabis, stimulants and amyl nitrite, and recent alcohol and cannabis use. A wide range of themes were identified regarding participant’s thoughts, emotions and behaviours (including sexual behaviours) secondary to substance use, including: cognitive functioning, mood, social interaction, physical effects, sexual activity, sexual risk-taking, perception of sexual experience, arousal, sensation, relaxation, disinhibition, energy/activity level and numbing. Analyses indicated several consequences were consistent across substance types (e.g. cognitive impairment, enhanced mood), whereas others were highly specific to a given substance (e.g. heightened arousal post amyl nitrite use). - Conclusions Prevention and interventions need to consider the variety of effects of substance use in tailoring effective education programs to reduce harms. A diversity of consequences appear to have direct and indirect impacts on decision-making, sexual activity and risk-taking. Findings lend support for the role of specific beliefs (e.g. expectancies) related to substance use on risk-related cognitions, emotions and behaviours.