913 resultados para walled carbon nanotubes
Resumo:
Polymethyl methacrylate (PMMA) bone cement–multiwalled carbon nanotube (MWCNT) nanocomposites with a weight loading of 0.1% were prepared using 3 different methods of MWCNT incorporation. The mechanical and thermal properties of the resultant nanocomposite cements were characterised in accordance with the international standard for acrylic resin cements. The mechanical properties of the resultant nanocomposite cements were influenced by the type of MWCNT and method of incorporation used. The exothermic polymerisation reaction for the PMMA bone cement was significantly reduced when thermally conductive functionalised MWCNTs were added. This reduction in exotherm translated in a decrease in thermal necrosis index value of the respective nanocomposite cements, which potentially could reduce the hyperthermia experienced in vivo. The morphology and degree of dispersion of the MWCNTs in the PMMA matrix at different scales were analysed using scanning electron microscopy. Improvements in mechanical properties were attributed to the MWCNTs arresting/retarding crack propagation through the cement by providing a bridging effect into the wake of the crack, normal to the direction of crack growth. MWCNT agglomerations were evident within the cement microstructure, the degree of these agglomerations was dependent on the method used to incorporate the MWCNTs into the cement.
Resumo:
This paper presents a novel approach for introducing aligned carbon nanotubes (CNTs) at the crack interface of pre-impregnated (prepreg) carbon fibre composite plies, creating a hierarchical (three-phase) composite structure. The aim of this approach is to improve the interlaminar fracture toughness. The developed method for transplanting the aligned CNTs from the silicon wafer onto the pre-preg material is described. Scanning electron microscopy (SEM) was used to analyse the effects of the transplantation method. Double Cantilever Beam (DCB) specimens were prepared, according to ASTM standard D5528- 01R07E03 [1] and aligned multi-walled carbon nanotubes (MWCNTs) were introduced at the crack-tip. Mode I fracture tests for pristine (control) specimens and CNT-enhanced specimens were conducted and an average increase in the critical strain energy release rate (GIc) of approximately 50 % was achieved.
Resumo:
We report on a temperature dependence of the frequency of all the major peaks in the Raman spectra of carbon nanotubes, using different excitation laser powers at the sample. The frequency decreases with increasing temperature for all peaks, and the shifts in Raman frequencies are linear in the temperature of the sample. In comparison, a similar dependence is found in active carbon, but no shift is observed for the highly ordered pyrolytic graphite within the same range of variation in laser power. A lowering of frequency at higher temperature implies an increase in the carbon-carbon distance at higher temperature. The relatively strong temperature dependence in carbon nanotubes and active carbon may be due to the enhanced increase in carbon-carbon distance. This enhancement may originate from the heavy defects and disorder in these materials. (C) 1998 American Institute of Physics. [S0021-8979(98)05219-0].
Resumo:
The effects of addition of reinforcing carbon nanotubes (CNTs) into hydrogenated nitrile-butadiene rubber (HNBR) matrix on the mechanical, dynamic viscoelastic, and permeability properties were studied in this investigation. Different techniques of incorporating nanotubes in HNBR were investigated in this research. The techniques considered were more suitable for industrial preparation of rubber composites. The nanotubes were modified with different surfactants and dispersion agents to improve the compatibility and adhesion of nanotubes on the HNBR matrix. The effects of the surface modification of the nanotubes on various properties were examined in detail. The amount of CNTs was varied from 2.5 to 10 phr in different formulations prepared to identify the optimum CNT levels. A detailed analysis was made to investigate the morphological structure and mechanical behavior at room temperature. The viscoelastic behavior of the nanotube filler elastomer was studied by dynamic mechanical thermal analysis (DMTA). Morphological analysis indicated a very good dispersion of the CNTs for a low nanotube loading of 3.5 phr. A significant improvement in the mechanical properties was observed with the addition of nanotubes. DMTA studies revealed an increase in the storage modulus and a reduction in the glass-transition temperature after the incorporation of the nanotubes. Further, the HNBR/CNT nanocomposites were subjected to permeability studies. The studies showed a significant reduction in the permeability of nitrogen gas. Copyright © 2011 Wiley Periodicals, Inc.
Resumo:
A carbon nanotube free-standing linearly dichroic polariser is developed using solid-state extrusion. Membrane cohesion is experimentally and numerically demonstrated to derive from inter-tube van der Waals interactions in this family of planar metastable morphologies, controlled by the chemical vapour deposition conditions. Ultra-broadband polarisation (400 nm – 2.5 mm) is shown and corroborated by effective medium and full numerical simulations.
Resumo:
A low cost solar collector was developed by using polymeric components as opposed to metal and glass components of traditional solar collectors. In order to utilize polymers for the absorber of the solar collector, Carbon Nanotubes (CNT) has been added as a filler to improve the thermal conductivity and the solar absorptivity of polymers. The solar collector was designed as a multi-layer construction with considering the economic manufacturing. Through the mathematical heat transfer analysis, the performance and characteristics of the designed solar collector have been estimated. Furthermore, the prototypes of the proposed system were built and tested at a state-of-the-art solar simulator facility to evaluate the actual performance of the developed solar collector. The cost-effective polymer-CNT solar collector, which achieved efficiency as much as that of a conventional glazed flat plate solar panel, has been successfully developed.
Resumo:
High density polyethylene (HDPE)/multi-walled carbon nanotube (MWCNT) nanocomposites were prepared by melt mixing using twin-screw extrusion. The extruded pellets were compression moulded at 200°C for 5min followed by cooling at different cooling rates (20°C/min and 300°C/min respectively) to produce sheets for characterization. Scanning electron microscopy (SEM) shows that the MWCNTs are uniformly dispersed in the HDPE. At 4 wt% addition of MWCNTs composite modulus increased by over 110% compared with the unfilled HDPE (regardless of the cooling rate). The yield strength of both unfilled and filled HDPE decreased after rapid cooling by about 10% due to a lower crystallinity and imperfect crystallites. The electrical percolation threshold of composites, irrespective of the cooling rate, is between a MWCNT concentration of 1∼2 wt%. Interestingly, the electrical resistivity of the rapidly cooled composite with 2 wt% MWCNTs is lower than that of the slowly cooled composites with the same MWCNT loading. This may be due to the lower crystallinity and smaller crystallites facilitating the formation of conductive pathways. This result may have significant implications for both process control and the tailoring of electrical conductivity in the manufacture of conductive HDPE/MWCNT nanocomposites.
Resumo:
A low cost flat plate solar collector was developed by using polymeric components as opposed to metal and glass components of traditional flat plate solar collectors. In order to improve the thermal and optical properties of the polymer absorber of the solar collector, Carbon Nanotubes (CNT) were added as a filler. The solar collector was designed as a multi-layer construction with an emphasis on low manufacturing costs. Through the mathematical heat transfer analysis, the thermal performance of the collector and the characteristics of the design parameters were analyzed. Furthermore, the prototypes of the proposed collector were built and tested at a state-of-the-art solar simulator facility to evaluate its actual performance. The inclusion of CNT improved significantly the properties of the polymer absorber. The key design parameters and their effects on the thermal performance were identified via the heat transfer analysis. Based on the experimental and analytical results, the cost-effective polymer-CNT solar collector, which achieved a high thermal efficiency similar to that of a conventional glazed flat plate solar panel, was successfully developed.