926 resultados para visual data analysis
Resumo:
Tide gauge data are identified as legacy data given the radical transition between observation method and required output format associated with tide gauges over the 20th-century. Observed water level variation through tide-gauge records is regarded as the only significant basis for determining recent historical variation (decade to century) in mean sea-level and storm surge. There are limited tide gauge records that cover the 20th century, such that the Belfast (UK) Harbour tide gauge would be a strategic long-term (110 years) record, if the full paper-based records (marigrams) were digitally restructured to allow for consistent data analysis. This paper presents the methodology of extracting a consistent time series of observed water levels from the 5 different Belfast Harbour tide gauges’ positions/machine types, starting late 1901. Tide-gauge data was digitally retrieved from the original analogue (daily) records by scanning the marigrams and then extracting the sequential tidal elevations with graph-line seeking software (Ungraph™). This automation of signal extraction allowed the full Belfast series to be retrieved quickly, relative to any manual x–y digitisation of the signal. Restructuring variably lengthed tidal data sets to a consistent daily, monthly and annual file format was undertaken by project-developed software: Merge&Convert and MergeHYD allow consistent water level sampling both at 60 min (past standard) and 10 min intervals, the latter enhancing surge measurement. Belfast tide-gauge data have been rectified, validated and quality controlled (IOC 2006 standards). The result is a consistent annual-based legacy data series for Belfast Harbour that includes over 2 million tidal-level data observations.
Resumo:
The particle size, shape and distribution of a range of rotational moulding polyethylenes (PEs) ground to powder was investigated using a novel visual data acquisition and analysis system (TP Picture®), developed by Total Petrochemicals. Differences in the individual particle shape factors of the powder samples were observed and correlations with the grinding conditions were determined. When heated, the bubble dissolution behaviour of the same powders was investigated and the shape factor correlated with densification rate, bubble size and bubble distribution.
Resumo:
The melting and densification behaviour of a range of Polyethylenes (PEs) produced from 2 different catalysts, Ziegler-Natta and Metallocene types, were investigated using a novel visual data acquisition and analysis system (TP Picture®), developed by Total Petrochemicals Research Feluy [1]. Differences in the dissolution behaviour of the bubbles were observed and correlations with the material density, densification rate, bubble size / distribution and MFI were determined.
Resumo:
Föreliggande undersökning genomförs i samarbete med uppdragsgivaren och HR-företaget Dala HR Partner. Syftet med undersökningen är att ta reda på hur logotyp och grafisk profil bör se ut för att på bästa sätt förmedla företagets mål och värderingar, seriös, kompetent, effektiv och trygg. En visuell innehållsanalys utfördes med syftet att få en bättre förståelse för hur andra HR-företag profilerar sig. Semi-strukturerade intervjuer utfördes med Dala HR Partners målgrupp samt en kompletterande enkätundersökning med personer med erfarenhet inom grafisk design för att få åsikter både från lekmän och yrkeserfarna. De olika materialinsamlingsmetoderna gav oss bra underlag till framtagningen av logotyp och grafisk profil som på bästa sätt skulle förmedla Dala HR Partners mål och värderingar, samt uppfylla de komponenter som utgör en fullständig grafisk identitet. Från undersökningen har det framgått att det är viktigt med en tanke bakom det visuella materialet för att egenskaperna ska förmedlas på bästa sätt. Valet av exempelvis färg och form har betydelse i hur företagets värderingar kommuniceras. Resultat av den slutgiltiga logotypen och grafiska profilen visar att de i stor utsträckning förmedlar Dala HR Partners värderingar och mål, seriös, kompetent, effektiv och trygg, vilket var målet med den här undersökningen och vårt examensarbete.
Resumo:
Syria has been a major producer and exporter of fresh fruit and vegetables (FFV) in the Arabic region. Prior to 2011, Syrian FFV were mainly exported to the neighbouring countries, the Gulf States and Northern Africa as well as to Eastern European countries. Although the EU is potentially one of the most profitable markets of high quality FFV (such as organic ones) in the world, Syrian exports of FFV to Western European countries like Germany have been small. It could be a lucrative opportunity for Syrian growers and exporters of FFV to export organic products to markets such as Germany, where national production is limited to a few months due to climatic conditions. Yet, the organic sector in Syria is comparatively young and only a very small area of FFV is certified according to EU organic regulations. Up to the author’s knowledge, little was known about Syrian farmers’ attitudes towards organic FFV production. There was also no study so far that explored and analysed the determining factors for organic FFV adoption among Syrian farmers as well as the exports of these products to the EU markets. The overarching aim of the present dissertation focused on exploring and identifying the market potential of Syrian exports of organic FFV to Germany. The dissertation was therefore concerned with three main objectives: (i) to explore if German importers and wholesalers of organic FFV see market opportunities for Syrian organic products and what requirements in terms of quality and quantity they have, (ii) to determine the obstacles Syrian producers and exporters face when exporting agricultural products to Germany, and (iii) to investigate whether Syrian farmers of FFV can imagine converting their farms to organic production as well as the underlying reasons why they do so or not. A twofold methodological approach with expert interviews and a farmer survey were used in this dissertation to address the abovementioned objectives. While expert interviews were conducted with German and Syrian wholesalers of (organic) FFV in 2011 (9 interviews each), the farmer survey was administrated with 266 Syrian farmers of FFV in the main region for the production of FFV (i.e. the coastal region) from November 2012 till May 2013. For modelling farmers’ decisions to adopt organic farming, the Theory of Planned Behaviour as theoretical framework and Partial Least Squares Structural Equation Modelling as the main method for data analysis were used in this study. The findings of this dissertation yield implications for the different stakeholders (governmental institutions and NGOs, farmers, exporters, wholesalers, etc.) who are interested in prompting the Syrian export of organic products. Based on the empirical results and a literature review, an action plan to promote Syrian production and export of organic products was developed which can help in the post-war period in Syria at improving the organic sector.
Resumo:
The Twitter System is the biggest social network in the world, and everyday millions of tweets are posted and talked about, expressing various views and opinions. A large variety of research activities have been conducted to study how the opinions can be clustered and analyzed, so that some tendencies can be uncovered. Due to the inherent weaknesses of the tweets - very short texts and very informal styles of writing - it is rather hard to make an investigation of tweet data analysis giving results with good performance and accuracy. In this paper, we intend to attack the problem from another aspect - using a two-layer structure to analyze the twitter data: LDA with topic map modelling. The experimental results demonstrate that this approach shows a progress in twitter data analysis. However, more experiments with this method are expected in order to ensure that the accurate analytic results can be maintained.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Attention Deficit Hyperactivity Disorder (ADHD) is one the most prevalent of childhood diagnoses. There is limited research available from the perspective of the child or young person with ADHD. The current research explored how young people perceive ADHD. A secondary aim of the study was to explore to what extent they identify with ADHD. Five participants took part in this study. Their views were explored using semi-structured interviews guided by methods from Personal Construct Psychology. The data was analysed using Interpretative Phenomenological Analysis (IPA). Data analysis suggests that the young people’s views of ADHD are complex and, at times, contradictory. Four super-ordinate themes were identified: What is ADHD?, The role and impact of others on the experience of ADHD, Identity conflict and My relationship with ADHD. The young people’s contradictory views on ADHD are reflective of portrayals of ADHD in the media. A power imbalance was also identified where the young people perceive that they play a passive role in the management of their treatment. Finally, the young people’s accounts revealed a variety of approaches taken to make sense of their condition.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Understanding how aquatic species grow is fundamental in fisheries because stock assessment often relies on growth dependent statistical models. Length-frequency-based methods become important when more applicable data for growth model estimation are either not available or very expensive. In this article, we develop a new framework for growth estimation from length-frequency data using a generalized von Bertalanffy growth model (VBGM) framework that allows for time-dependent covariates to be incorporated. A finite mixture of normal distributions is used to model the length-frequency cohorts of each month with the means constrained to follow a VBGM. The variances of the finite mixture components are constrained to be a function of mean length, reducing the number of parameters and allowing for an estimate of the variance at any length. To optimize the likelihood, we use a minorization–maximization (MM) algorithm with a Nelder–Mead sub-step. This work was motivated by the decline in catches of the blue swimmer crab (BSC) (Portunus armatus) off the east coast of Queensland, Australia. We test the method with a simulation study and then apply it to the BSC fishery data.
Resumo:
The protein lysate array is an emerging technology for quantifying the protein concentration ratios in multiple biological samples. It is gaining popularity, and has the potential to answer questions about post-translational modifications and protein pathway relationships. Statistical inference for a parametric quantification procedure has been inadequately addressed in the literature, mainly due to two challenges: the increasing dimension of the parameter space and the need to account for dependence in the data. Each chapter of this thesis addresses one of these issues. In Chapter 1, an introduction to the protein lysate array quantification is presented, followed by the motivations and goals for this thesis work. In Chapter 2, we develop a multi-step procedure for the Sigmoidal models, ensuring consistent estimation of the concentration level with full asymptotic efficiency. The results obtained in this chapter justify inferential procedures based on large-sample approximations. Simulation studies and real data analysis are used to illustrate the performance of the proposed method in finite-samples. The multi-step procedure is simpler in both theory and computation than the single-step least squares method that has been used in current practice. In Chapter 3, we introduce a new model to account for the dependence structure of the errors by a nonlinear mixed effects model. We consider a method to approximate the maximum likelihood estimator of all the parameters. Using the simulation studies on various error structures, we show that for data with non-i.i.d. errors the proposed method leads to more accurate estimates and better confidence intervals than the existing single-step least squares method.
Resumo:
Datacenters have emerged as the dominant form of computing infrastructure over the last two decades. The tremendous increase in the requirements of data analysis has led to a proportional increase in power consumption and datacenters are now one of the fastest growing electricity consumers in the United States. Another rising concern is the loss of throughput due to network congestion. Scheduling models that do not explicitly account for data placement may lead to a transfer of large amounts of data over the network causing unacceptable delays. In this dissertation, we study different scheduling models that are inspired by the dual objectives of minimizing energy costs and network congestion in a datacenter. As datacenters are equipped to handle peak workloads, the average server utilization in most datacenters is very low. As a result, one can achieve huge energy savings by selectively shutting down machines when demand is low. In this dissertation, we introduce the network-aware machine activation problem to find a schedule that simultaneously minimizes the number of machines necessary and the congestion incurred in the network. Our model significantly generalizes well-studied combinatorial optimization problems such as hard-capacitated hypergraph covering and is thus strongly NP-hard. As a result, we focus on finding good approximation algorithms. Data-parallel computation frameworks such as MapReduce have popularized the design of applications that require a large amount of communication between different machines. Efficient scheduling of these communication demands is essential to guarantee efficient execution of the different applications. In the second part of the thesis, we study the approximability of the co-flow scheduling problem that has been recently introduced to capture these application-level demands. Finally, we also study the question, "In what order should one process jobs?'' Often, precedence constraints specify a partial order over the set of jobs and the objective is to find suitable schedules that satisfy the partial order. However, in the presence of hard deadline constraints, it may be impossible to find a schedule that satisfies all precedence constraints. In this thesis we formalize different variants of job scheduling with soft precedence constraints and conduct the first systematic study of these problems.