904 resultados para vernalization-related gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to identify the risks of staphylococcal food poisoning due to the consumption of raw milk. Fifty-one farms in Londrina (PR) and 50 in Pelotas (RS) were analyzed, to determine the population of coagulase-positive staphylococci (UFC/ mL), as well as to verify the ability of producing Staphylococcal Enterotoxin A (SEA) by immunodifusion (OSP), the presence of the gene for the production of SEA (PCR) in the cultures, and the research of enterotoxin (SEA to SEE) in milk samples using ELISA commercial kit. Considering the 101 farms analyzed, 19 (18.8%) presented coagulase-positive staphylococci count above 105 UFC/mL. For the evaluation of the enterotoxigenic ability (SEA) by the OSP technique, six cultures coagulase-positive (5.5%) were positive to the test and identified as S. aureus. From the coagualse-negative sample, one (5.5%) was OSP positive. For the evaluation of the presence of the gene for EEA synthesis, 51 cultures of staphylococci were tested. From this total, 14 (27.45%) presented the gene, and from that, only 5 (9.81%) cultures were capable of expressing it in the technique of the OSP. The morphologic characteristic of the evaluated cultures that had enterotoxigenic capacity, from the 14 (33,3%) cultures that presented the gene for EEA production, 05 (11.9%) were characterized as typical cultures of S.aureus in Baird Parker agar. All the 12 milk samples studied for the presence of EEA to EEE in milk were negative. Thus, it can be concluded that there is extensive contamination of raw milk for staphylococci coagulase, however, most of the isolated strains were not enterotoxigenic or did not express such a characteristic. Only 9.81% of the tested colonies expressed the gene and effectively produced SEA. None of the samples had sufficient counts to produce detectable amounts of SEA. The milk samples did not present risk to cause staphylococcal food poisoning if consumed in natura until the collection moment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Imbalance in bacterial species composition of the gut microbiota is one of the factors associated with the cause or complication of the symptoms of Crohn's disease (CD). This disequilibrium consists in the reduction of biodiversity, decrease of genus such as Bifidobacterium and elevation of species such as Escherichia coli. Human microbiota varies among subjects of a same population irrespective of their health condition and among individuals living in distinct geographic locations. In animal models, sex related differences could also be observed in gut bacterial species composition under some pathological conditions. Experiments conducted with mice have demonstrated that the manifestation of type 1 diabetes (T1D) could be under the influence of the animal sex and its serum level of testosterone, which in turn could be modulated by a particular gut microbiota. Considering the existence of similar features between T1D and CD, such as strong genetic component and malfunctioning of the immune system, we investigated whether differences could be observed in the gut microbiota dysbiosis of male and female CD patients. Methods: Fifty and 5 gut mucosal biopsies from 25 adult CD patients (11 males and 14 females) and 43 specimens of an equivalent clinical material from 22 control subjects (11 males and 11 females) were screened for bacterial biodiversity by analyzing sequences of 16SrDNA V6 region. A number of 2-3 samples each from distinct gut segments (from ileum to rectum) were taken from each subject. The 16SrDNA sequences were obtained by sequencing PCR amplicons of the corresponding gene in the Ion torrent PGM sequencer. Identification and classification of the bacterial groups followed the Ribosomal Database Project (RDP) website pipeline. The relationships of the bacterial taxa with each of the study parameters was performed by compiling the data in a MS Excel and the level of statistical significance determined by the Chi-square test. Results: A total of 3203 16SrDNA sequences were detected in the 98 biopsies samples, the majority of which matching Proteobacteria, Firmicutes, Bacterioidetes, and Actinobacteria. The percentage of DNA sequences for each of these phyla found in Male control subjects/Male CD patients was 40.5/33, 32.7/32.4, 20.8/24.5, and 4.4/4,4 for Proteobacteria, Firmicutes, Bacterioidetes, and Actinobacteria, respectively. In Female comparisons, these values were 35.6/42, 39.2/26.3, 19.8/23.3, 5.2/7. Both Male and Female CD patients presented higher numbers of sequences of Actinobacteria and Bacterioidetes than those of control subjects of the same gender. Case-control differences for Firmicutes could be observed only in female comparisons and, for Proteobacteria, although case-control differences were observed in both genders, the nature of difference was distinct, since while in CD female patients a higher number of sequences matching this phylum was detected, in males a reduced number was observed, in comparison with controls. The species responsible for the Proteobacteria variation in both gender was Escherichia coli. Conclusions: The data presented above suggest that any analysis of dysbiosis in CD must take in account the patient's gender, an observation particularly relevant for Escherichia coli, whose association with CD has been most intensively investigated and for which the present study shows a reverse quantitative variation regarding the patients' gender.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymorphisms in the VDR gene were reported to be associated with variations in intrauterine and postnatal growth and with adult height, but also with other traits that are strongly correlated such as the BMI, insulin sensitivity, insulin secretion and hyperglycemia. Here, we assessed the impact of VDR polymorphisms on body height and its interactions with obesity- and glucose tolerance-related traits in obese children and adolescents. We studied 173 prepubertal (Tanner's stage 1) and 146 pubertal (Tanner's stages 2-5) obese children who were referred for a weight-loss program. Three single nucleotide polymorphisms were genotyped: rs1544410 (BsmI), rs7975232 (ApaI) and rs731236 (TaqI). BsmI and TaqI genotypes were significantly associated with height in pubertal children, but the associations did not reach statistical significance in prepubertal children. In stepwise regression analyses, the lean body mass, insulin secretion, BsmI or TaqI genotypes and the father's and the mother's height were independently and positively associated with height in pubertal children. These covariables accounted for 46% of the trait variance. The height of homozygous carriers of the minor allele of BsmI was 0.65 z-scores (4 cm) higher than the height of homozygous carriers of the major allele (P=.0006). Haplotype analyses confirmed the associations of the minor alleles of BsmI and TaqI with increased height. In conclusion, VDR genotypes were significantly associated with height in pubertal obese children. The associations were independent from the effects of confounding traits, such as the body fat mass, insulin secretion, insulin sensitivity and glucose tolerance. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients with type 2 diabetes mellitus (T2DM) exhibit insulin resistance associated with obesity and inflammatory response, besides an increased level of oxidative DNA damage as a consequence of the hyperglycemic condition and the generation of reactive oxygen species (ROS). In order to provide information on the mechanisms involved in the pathophysiology of T2DM, we analyzed the transcriptional expression patterns exhibited by peripheral blood mononuclear cells (PBMCs) from patients with T2DM compared to non-diabetic subjects, by investigating several biological processes: inflammatory and immune responses, responses to oxidative stress and hypoxia, fatty acid processing, and DNA repair. PBMCs were obtained from 20 T2DM patients and eight non-diabetic subjects. Total RNA was hybridized to Agilent whole human genome 4x44K one-color oligo-microarray. Microarray data were analyzed using the GeneSpring GX 11.0 software (Agilent). We used BRB-ArrayTools software (gene set analysis - GSA) to investigate significant gene sets and the Genomica tool to study a possible influence of clinical features on gene expression profiles. We showed that PBMCs from T2DM patients presented significant changes in gene expression, exhibiting 1320 differentially expressed genes compared to the control group. A great number of genes were involved in biological processes implicated in the pathogenesis of T2DM. Among the genes with high fold-change values, the up-regulated ones were associated with fatty acid metabolism and protection against lipid-induced oxidative stress, while the down-regulated ones were implicated in the suppression of pro-inflammatory cytokines production and DNA repair. Moreover, we identified two significant signaling pathways: adipocytokine, related to insulin resistance; and ceramide, related to oxidative stress and induction of apoptosis. In addition, expression profiles were not influenced by patient features, such as age, gender, obesity, pre/post-menopause age, neuropathy, glycemia, and HbA(1c) percentage. Hence, by studying expression profiles of PBMCs, we provided quantitative and qualitative differences and similarities between T2DM patients and non-diabetic individuals, contributing with new perspectives for a better understanding of the disease. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systemic lupus erythematosus (SLE) is an autoimmune disease that results in inflammation and tissue damage. The etiology of SLE remains unknown, but recent studies have shown that the innate immune system may have a role in SLE pathogenesis through the secretion of small cationic peptides named defensins. The aim of the study was to determine the possible involvement in SLE of three functional single nucleotide polymorphisms (SNPs) (c.-52G>A, c.-44C>G and c.-20G>A) in the 5'UTR region of DEFB1 gene, by analyzing them in a population of 139 SLE patients and 288 healthy controls. The c.-52G>A SNP showed significant differences in allele and genotype frequency distribution between SLE patients and controls (p = 0.01 and p = 0.02 respectively) indicating protection against SLE (A allele, OR = 0.68, AA genotype OR = 0.51). Significant differences were also observed for c.-44C>G SNP, the C/G genotype being associated with susceptibility to SLE (OR = 1.60, p = 0.04). Moreover, statistically significant differences between patients and controls were found for two DEFB1 haplotypes (GCA and GGG, p = 0.01 and p = 0.02 respectively). When considering DEFB1 SNPs and SLE clinical and laboratory manifestations, significant association was found with neuropsychiatric disorders, immunological alterations and anti-DNA antibodies. In conclusion, our results evidence a possible role for the c.-52G>A and c.-44C>G DEFB1 polymorphisms in SLE pathogenesis, that can be considered as possible risk factors for development of disease and disease-related clinical manifestations. Additional studies are needed, to corroborate these results as well as functional studies to understand the biological role of these SNPs in the pathogenesis of SLE. Lupus (2012) 21, 625-631.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contents The aim of this study was to determine the effect of temporary inhibition of meiosis using the cyclin-dependent kinase inhibitor butyrolactone I (BLI) on gene expression in bovine oocytes and cumulus cells. Immature bovine cumulusoocyte complexes (COCs) were assigned to groups: (i) Control COCs collected immediately after recovery from the ovary or (ii) after in vitro maturation (IVM) for 24 h, (iii) Inhibited COCs collected 24 h after incubation with 100 mu m BLI or (iv) after meiotic inhibition for 24 h followed by IVM for a further 22 h. For mRNA relative abundance analysis, pools of 10 denuded oocytes and respective cumulus cells were collected. Transcripts related to cell cycle regulation and oocyte competence were evaluated in oocytes and cumulus cells by quantitative real-time PCR (qPCR). Most of the examined transcripts were downregulated (p < 0.05) after IVM in control and inhibited oocytes (19 of 35). Nine transcripts remained stable (p > 0.05) after IVM in control oocytes; only INHBA did not show this pattern in inhibited oocytes. Seven genes were upregulated after IVM in control oocytes (p < 0.05), and only PLAT, RBP1 and INHBB were not upregulated in inhibited oocytes after IVM. In cumulus cells, six genes were upregulated (p < 0.05) after IVM and eight were downregulated (p < 0.05). Cells from inhibited oocytes showed the same pattern of expression regarding maturation profile, but were affected by the temporary meiosis inhibition of the oocyte when the same maturation stages were compared between inhibited and control groups. In conclusion, changes in transcript abundance in oocytes and cumulus cells during maturation in vitro were mostly mirrored after meiotic inhibition followed by maturation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complementary sex determination in Hymenoptera implies that heterozygosity at the sex locus leads to the development of diploid females, whereas hemizygosity results in haploid males. Diploid males can arise through inbreeding. In social species, these pose a double burden on colony fitness, from significant reduction in its worker force and through being less viable and fertile than haploid males. Apart from being "misfits", diploid males are of interest to assess molecular correlates for possibly ploidy-related bionomic differences. Herein, we generated suppression subtractive cDNA libraries from newly emerged haploid and diploid males of the stingless bee Melipona quadrifasciata to enrich for differentially expressed genes. Gene Ontology classification revealed that in haploid males more DEGs were related to stress responsiveness, biosynthetic processes, reproductive processes and spermatogenesis, whereas in diploid ones differentially expressed genes were associated with cellular organization, nervous system development and amino acid transport were prevalent. Furthermore, both libraries contained over 40 % ESTs representing possibly novel transcripts. Quantitative RT-PCR analyses confirmed the differential expression of a representative DEG set in newly emerged males. Several muscle formation and energy metabolism-related genes were under-expressed in diploid males. On including 5-day-old males in the analysis, changes in transcript abundance during sexual maturation were revealed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Xylella fastidiosa inhabits the plant xylem, a nutrient-poor environment, so that mechanisms to sense and respond to adverse environmental conditions are extremely important for bacterial survival in the plant host. Although the complete genome sequences of different Xylella strains have been determined, little is known about stress responses and gene regulation in these organisms. In this work, a DNA microarray was constructed containing 2,600 ORFs identified in the genome sequencing project of Xylella fastidiosa 9a5c strain, and used to check global gene expression differences in the bacteria when it is infecting a symptomatic and a tolerant citrus tree. Different patterns of expression were found in each variety, suggesting that bacteria are responding differentially according to each plant xylem environment. The global gene expression profile was determined and several genes related to bacterial survival in stressed conditions were found to be differentially expressed between varieties, suggesting the involvement of different strategies for adaptation to the environment. The expression pattern of some genes related to the heat shock response, toxin and detoxification processes, adaptation to atypical conditions, repair systems as well as some regulatory genes are discussed in this paper. DNA microarray proved to be a powerful technique for global transcriptome analyses. This is one of the first studies of Xylella fastidiosa gene expression in vivo which helped to increase insight into stress responses and possible bacterial survival mechanisms in the nutrient-poor environment of xylem vessels.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pellegrino R, Sunaga DY, Guindalini C, Martins RC, Mazzotti DR, Wei Z, Daye ZJ, Andersen ML, Tufik S. Whole blood genome-wide gene expression profile in males after prolonged wakefulness and sleep recovery. Physiol Genomics 44: 1003-1012, 2012. First published September 4, 2012; doi: 10.1152/physiolgenomics.00058.2012.-Although the specific functions of sleep have not been completely elucidated, the literature has suggested that sleep is essential for proper homeostasis. Sleep loss is associated with changes in behavioral, neurochemical, cellular, and metabolic function as well as impaired immune response. Using high-resolution microarrays we evaluated the gene expression profiles of healthy male volunteers who underwent 60 h of prolonged wakefulness (PW) followed by 12 h of sleep recovery (SR). Peripheral whole blood was collected at 8 am in the morning before the initiation of PW (Baseline), after the second night of PW, and one night after SR. We identified over 500 genes that were differentially expressed. Notably, these genes were related to DNA damage and repair and stress response, as well as diverse immune system responses, such as natural killer pathways including killer cell lectin-like receptors family, as well as granzymes and T-cell receptors, which play important roles in host defense. These results support the idea that sleep loss can lead to alterations in molecular processes that result in perturbation of cellular immunity, induction of inflammatory responses, and homeostatic imbalance. Moreover, expression of multiple genes was downregulated following PW and upregulated after SR compared with PW, suggesting an attempt of the body to re-establish internal homeostasis. In silico validation of alterations in the expression of CETN3, DNAJC, and CEACAM genes confirmed previous findings related to the molecular effects of sleep deprivation. Thus, the present findings confirm that the effects of sleep loss are not restricted to the brain and can occur intensely in peripheral tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The major cause of athlete's foot is Trichophyton rubrum, a dermatophyte or fungal pathogen of human skin. To facilitate molecular analyses of the dermatophytes, we sequenced T. rubrum and four related species, Trichophyton tonsurans, Trichophyton equinum, Microsporum canis, and Microsporum gypseum. These species differ in host range, mating, and disease progression. The dermatophyte genomes are highly colinear yet contain gene family expansions not found in other human-associated fungi. Dermatophyte genomes are enriched for gene families containing the LysM domain, which binds chitin and potentially related carbohydrates. These LysM domains differ in sequence from those in other species in regions of the peptide that could affect substrate binding. The dermatophytes also encode novel sets of fungus-specific kinases with unknown specificity, including nonfunctional pseudokinases, which may inhibit phosphorylation by competing for kinase sites within substrates, acting as allosteric effectors, or acting as scaffolds for signaling. The dermatophytes are also enriched for a large number of enzymes that synthesize secondary metabolites, including dermatophyte-specific genes that could synthesize novel compounds. Finally, dermatophytes are enriched in several classes of proteases that are necessary for fungal growth and nutrient acquisition on keratinized tissues. Despite differences in mating ability, genes involved in mating and meiosis are conserved across species, suggesting the possibility of cryptic mating in species where it has not been previously detected. These genome analyses identify gene families that are important to our understanding of how dermatophytes cause chronic infections, how they interact with epithelial cells, and how they respond to the host immune response. IMPORTANCE Athlete's foot, jock itch, ringworm, and nail infections are common fungal infections, all caused by fungi known as dermatophytes (fungi that infect skin). This report presents the genome sequences of Trichophyton rubrum, the most frequent cause of athlete's foot, as well as four other common dermatophytes. Dermatophyte genomes are enriched for four gene classes that may contribute to the ability of these fungi to cause disease. These include (i) proteases secreted to degrade skin; (ii) kinases, including pseudokinases, that are involved in signaling necessary for adapting to skin; (iii) secondary metabolites, compounds that act as toxins or signals in the interactions between fungus and host; and (iv) a class of proteins (LysM) that appear to bind and mask cell wall components and carbohydrates, thus avoiding the host's immune response to the fungi. These genome sequences provide a strong foundation for future work in understanding how dermatophytes cause disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In the analysis of effects by cell treatment such as drug dosing, identifying changes on gene network structures between normal and treated cells is a key task. A possible way for identifying the changes is to compare structures of networks estimated from data on normal and treated cells separately. However, this approach usually fails to estimate accurate gene networks due to the limited length of time series data and measurement noise. Thus, approaches that identify changes on regulations by using time series data on both conditions in an efficient manner are demanded. Methods: We propose a new statistical approach that is based on the state space representation of the vector autoregressive model and estimates gene networks on two different conditions in order to identify changes on regulations between the conditions. In the mathematical model of our approach, hidden binary variables are newly introduced to indicate the presence of regulations on each condition. The use of the hidden binary variables enables an efficient data usage; data on both conditions are used for commonly existing regulations, while for condition specific regulations corresponding data are only applied. Also, the similarity of networks on two conditions is automatically considered from the design of the potential function for the hidden binary variables. For the estimation of the hidden binary variables, we derive a new variational annealing method that searches the configuration of the binary variables maximizing the marginal likelihood. Results: For the performance evaluation, we use time series data from two topologically similar synthetic networks, and confirm that our proposed approach estimates commonly existing regulations as well as changes on regulations with higher coverage and precision than other existing approaches in almost all the experimental settings. For a real data application, our proposed approach is applied to time series data from normal Human lung cells and Human lung cells treated by stimulating EGF-receptors and dosing an anticancer drug termed Gefitinib. In the treated lung cells, a cancer cell condition is simulated by the stimulation of EGF-receptors, but the effect would be counteracted due to the selective inhibition of EGF-receptors by Gefitinib. However, gene expression profiles are actually different between the conditions, and the genes related to the identified changes are considered as possible off-targets of Gefitinib. Conclusions: From the synthetically generated time series data, our proposed approach can identify changes on regulations more accurately than existing methods. By applying the proposed approach to the time series data on normal and treated Human lung cells, candidates of off-target genes of Gefitinib are found. According to the published clinical information, one of the genes can be related to a factor of interstitial pneumonia, which is known as a side effect of Gefitinib.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the available public cerebral gene expression image data increasingly grows, the demand for automated methods to analyze such large amount of data also increases. An important study that can be carried out on these data is related to the spatial relationship between gene expressions. Similar spatial density distribution of expression between genes may indicate they are functionally correlated, thus the identification of these similarities is useful in suggesting directions of investigation to discover gene interactions and their correlated functions. In this paper, we describe the use of a high-throughput methodology based on Voronoi diagrams to automatically analyze and search for possible local spatial density relationships between gene expression images. We tested this method using mouse brain section images from the Allen Mouse Brain Atlas public database. This methodology provided measurements able to characterize the similarity of the density distribution between gene expressions and allowed the visualization of the results through networks and Principal Component Analysis (PCA). These visualizations are useful to analyze the similarity level between gene expression patterns, as well as to compare connection patterns between region networks. Some genes were found to have the same type of function and to be near each other in the PCA visualizations. These results suggest cerebral density correlations between gene expressions that could be further explored. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LAURENTINO, G. C., C. UGRINOWITSCH, H. ROSCHEL, M. S. AOKI, A. G. SOARES, M. NEVES JR, A. Y. AIHARA, A. DA ROCHA CORREA FERNANDES, and V. TRICOLI. Strength Training with Blood Flow Restriction Diminishes Myostatin Gene Expression. Med. Sci. Sports Exerc., Vol. 44, No. 3, pp. 406-412, 2012. Purpose: The aim of the study was to determine whether the similar muscle strength and hypertrophy responses observed after either low-intensity resistance exercise associated with moderate blood flow restriction or high-intensity resistance exercise are associated with similar changes in messenger RNA (mRNA) expression of selected genes involved in myostatin (MSTN) signaling. Methods: Twenty-nine physically active male subjects were divided into three groups: low-intensity (20% one-repetition maximum (1RM)) resistance training (LI) (n = 10), low-intensity resistance exercise associated with moderate blood flow restriction (LIR) (n = 10), and high-intensity (80% 1RM) resistance exercise (HI) (n = 9). All of the groups underwent an 8-wk training program. Maximal dynamic knee extension strength (1RM), quadriceps cross-sectional area (CSA), MSTN, follistatin-like related genes (follistatin (FLST), follistatin-like 3 (FLST-3)), activin IIb, growth and differentiation factor-associated serum protein 1 (GASP-1), and MAD-related protein (SMAD-7) mRNA gene expression were assessed before and after training. Results: Knee extension 1RM significantly increased in all groups (LI = 20.7%, LIR = 40.1%, and HI = 36.2%). CSA increased in both the LIR and HI groups (6.3% and 6.1%, respectively). MSTN mRNA expression decreased in the LIR and HI groups (45% and 41%, respectively). There were no significant changes in activin IIb (P > 0.05). FLST and FLST-3 mRNA expression increased in all groups from pre- to posttest (P < 0.001). FLST-3 expression was significantly greater in the HI when compared with the LIR and LI groups at posttest (P = 0.024 and P = 0.018, respectively). GASP-1 and SMAD-7 gene expression significantly increased in both the LIR and HI groups. Conclusions: We concluded that LIR was able to induce gains in 1RM and quadriceps CSA similar to those observed after traditional HI. These responses may be related to the concomitant decrease in MSTN and increase in FLST isoforms, GASP-1, and SMAD-7 mRNA gene expression.