846 resultados para uncoupling protein 1 (UCP1)
Resumo:
Autophagy is a highly conserved cellular process responsible for the degradation of long-lived proteins and organelles. Autophagy occurs at low levels under normal conditions, but it is enhanced in response to stress, e.g. nutrient deprivation, hypoxia, mitochondrial dysfunction and infection. "Tissue" transglutaminase (TG2) accumulates, both in vivo and in vitro, to high levels in cells under stressful conditions. Therefore, in this study, we investigated whether TG2 could also play a role in the autophagic process. To this end, we used TG2 knockout mice and cell lines in which the enzyme was either absent or overexpressed. The ablation of TG2 protein both in vivo and in vitro, resulted in an evident accumulation of microtubule-associated protein 1 light chain 3 cleaved isoform II (LC3 II) on pre-autophagic vesicles, suggesting a marked induction of autophagy. By contrast, the formation of the acidic vesicular organelles in the same cells was very limited, indicating an impairment of the final maturation of autophagolysosomes. In fact, the treatment of TG2 proficient cells with NH4Cl, to inhibit lysosomal activity, led to a marked accumulation of LC3 II and damaged mitochondria similar to what we observed in TG2-deficient cells. These data indicate a role for TG2-mediated post-translational modifications of proteins in the maturation of autophagosomes accompanied by the accumulation of many damaged mitochondria.
Resumo:
Enhanced immune responses for DNA and subunit vaccines potentiated by surfactant vesicle based delivery systems outlined in the present study, provides proof of principle for the beneficial aspects of vesicle mediated vaccination. The dehydration-rehydration technique was used to entrap plasmid DNA or subunit antigens into lipid-based (liposomes) or non-ionic surfactant-based (niosomes) dehydration-rehydration vesicles (DRV). Using this procedure, it was shown that both these types of antigens can be effectively entrapped in DRV liposomes and DRV niosomes. The vesicle size of DRV niosomes was shown to be twice the diameter (~2µm) of that of their liposome counterparts. Incorporation of cryoprotectants such as sucrose in the DRV procedure resulted in reduced vesicle sizes while retaining high DNA incorporation efficiency (~95%). Transfection studies in COS 7 cells demonstrated that the choice of cationic lipid, the helper lipid, and the method of preparation, all influenced transfection efficiency indicating a strong interdependency of these factors. This phenomenon has been further reinforced when 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE): cholesteryl 3b- [N-(N’ ,N’ -dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol)/DNA complexes were supplemented with non-ionic surfactants. Morphological analysis of these complexes using transmission electron microscopy and environmental scanning electron microscopy (ESEM) revealed the presence of heterogeneous structures which may be essential for an efficient transfection in addition to the fusogenic properties of DOPE. In vivo evaluation of these DNA incorporated vesicle systems in BALB/c mice showed weak antibody and cell-mediated immune (CMI) responses. Subsequent mock challenge with hepatitis B antigen demonstrated that, 1-monopalmitoyl glycerol (MP) based DRV, is a more promising DNA vaccine adjuvant. Studying these DRV systems as adjuvants for the Hepatitis B subunit antigen (HBsAg) revealed a balanced antibody/CMI response profile on the basis of the HBsAg specific antibody and cytokine responses which were higher than unadjuvated antigen. The effect of addition of MP, cholesterol and trehalose 6,6’-dibehenate (TDB) on the stability and immuno-efficacy of dimethyldioctadecylammonium bromide (DDA) vesicles was investigated. Differential scanning calorimetry showed a reduction in transition temperature of DDA vesicles by ~12°C when incorporated with surfactants. ESEM of MP based DRV system indicated an increased vesicle stability upon incorporation of antigen. Adjuvant activity of these systems tested in C57BL/6j mice against three subunit antigens i.e., mycobacterial fusion protein- Ag85B-ESAT-6, and two malarial antigens - merozoite surface protein-1, (MSP1), and glutamate rich protein, (GLURP) revealed that while MP and DDA based systems induced comparable antibody responses, DDA based systems induced powerful CMI responses.
Resumo:
OBJECTIVE: To investigate the anti-obesity effect of the adipokine zinc-a(2)-glycoprotein (ZAG) in rats and the mechanism of this effect. SUBJECTS: Mature male Wistar rats (540 ± 83 g) were administered human recombinant ZAG (50 µg per 100 g body weight given intravenously daily) for 10 days, while control animals received an equal volume of phosphate-buffered saline (PBS). RESULTS: Animals treated with ZAG showed a progressive decrease in body weight, without a decrease in food and water intake, but with a 0.4 °C rise in body temperature. Body composition analysis showed loss of adipose tissue, but an increase in lean body mass. The loss of fat was due to an increase in lipolysis as shown by a 50% elevation of plasma glycerol, accompanied by increased utilization of non-esterified fatty acids, as evidenced by the 55% decrease in plasma levels. Plasma levels of glucose and triglycerides were also reduced by 36-37% and there was increased expression of the glucose transporter 4 in both skeletal muscle and adipose tissue. Expression of the lipolytic enzymes adipose triglyceride lipase and hormone-sensitive lipase in the white adipose tissue (WAT) were increased twofold after ZAG administration. There was almost a twofold increased expression of uncoupling proteins 1 and 3 in brown adipose tissue and WAT, which would contribute to increased substrate utilization. Administration of ZAG increased ZAG expression twofold in the gastrocnemius muscle, BAT and WAT, which was probably necessary for its biological effect. CONCLUSION: These results show that ZAG produces increased lipid mobilization and utilization in the rat.
Resumo:
The CGRP (calcitonin gene-related peptide) receptor is a family B GPCR (G-protein-coupled receptor). It consists of a GPCR, CLR (calcitonin receptor-like receptor) and an accessory protein, RAMP1 (receptor activity-modifying protein 1). RAMP1 is needed for CGRP binding and also cell-surface expression of CLR. There have been few systematic studies of the ECLs (extracellular loops) of family B GPCRs. However, they are likely to be especially important for the interaction of the N-termini of the peptide agonists that are the natural agonists for these receptors. We have carried out alanine scans on all three ECLs of CLR, as well as their associated juxtamembrane regions. Residues within all three loops influence CGRP binding and receptor activation. Mutation of Ala203 and Ala206 on ECL1 to leucine increased the affinity of CGRP. Residues at the top of TM (transmembrane) helices 2 and 3 influenced CGRP binding and receptor activation. L351A and E357A in TM6/ECL3 reduced receptor expression and may be needed for CLR association with RAMP1. ECL2 seems especially important for CLR function; of the 16 residues so far examined in this loop, eight residues reduce the potency of CGRP at stimulating cAMP production when mutated to alanine.
Resumo:
Receptor activity modifying protein 1 (RAMP1) forms a complex with calcitonin receptor-like receptor (CLR) to produce the receptor for calcitonin gene-related peptide (CGRP). RAMP1 has two main roles. It facilitates the cell-surface expression of CLR. It is also essential for the binding of CGRP to the receptor. It seems likely that Y66, F93, H97 and F101, amongst other residues, form a binding site for CLR. These cluster together on the same face of the extracellular portion of RAMP1, probably close to where it enters the plasma membrane. Residues at the other end of RAMP1 are most likely to be involved in CGRP recognition, although it is currently unclear how they do this. Within this area, W74 is important for the binding of the nonpeptide antagonist, BIBN4096BS, although it does not seem to be involved in the binding of CGRP itself. It has been shown that there is an epitope within residues 23-60 of CLR that are essential for RAMP recognition. Under some circumstances, changes in the expression of RAMP1 can alter the sensitivity of cells to CGRP, demonstrating that regulation of its levels may be of physiological or pathophysiological importance.
Resumo:
The CGRP (calcitonin gene-related peptide) receptor is a family B GPCR (G-protein-coupled receptor). It consists of a GPCR, CLR (calcitonin receptor-like receptor) and an accessory protein, RAMP1 (receptor activity modifying protein 1). RAMP1 is needed for CGRP binding and also cell-surface expression of CLR. CLR is an example of a family B GPCR. Unlike family A GPCRs, little is known about how these receptors are activated by their endogenous ligands. This review considers what is known about the activation of family B GPCRs and then considers how this might be applied to CLR, particularly in light of new knowledge of the crystal structures of family A GPCRs.
Resumo:
Calcitonin gene-related peptide (CGRP) is a member of the calcitonin (CT) family of peptides. It is a widely distributed neuropeptide implicated in conditions such as neurogenic inflammation. With other members of the CT family, it shares an N-terminal disulphide-bonded ring which is essential for biological activity, an area of potential α-helix, and a C-terminal amide. CGRP binds to the calcitonin receptor-like receptor (CLR) in complex with receptor activity-modifying protein 1 (RAMP1), a member of the family B (or secretin-like) GPCRs. It can also activate other CLR or calcitonin-receptor/RAMP complexes. This 37 amino acid peptide comprises the N-terminal ring that is required for receptor activation (residues 1-7); an α-helix (residues 8-18), a region incorporating a β-bend (residues 19-26) and the C-terminal portion (residues 27-37), that is characterized by bends between residues 28-30 and 33-34. A few residues have been identified that seem to make major contributions to receptor binding and activation, with a larger number contributing either to minor interactions (which collectively may be significant), or to maintaining the conformation of the bound peptide. It is not clear if CGRP follows the pattern of other family B GPCRs in binding largely as an α-helix. Linked Articles This article is part of a themed section on Neuropeptides. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2013.170.issue-7 © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.
Resumo:
The calcitonin receptor-like receptor (CLR) acts as a receptor for the calcitonin gene-related peptide (CGRP) but in order to recognize CGRP, it must form a complex with an accessory protein, receptor activity modifying protein 1 (RAMP1). Identifying the protein/protein and protein/ligand interfaces in this unusual complex would aid drug design. The role of the extreme N-terminus of CLR (Glu23-Ala60) was examined by an alanine scan and the results were interpreted with the help of a molecular model. The potency of CGRP at stimulating cAMP production was reduced at Leu41Ala, Gln45Ala, Cys48Ala and Tyr49Ala; furthermore, CGRP-induced receptor internalization at all of these receptors was also impaired. Ile32Ala, Gly35Ala and Thr37Ala all increased CGRP potency. CGRP specific binding was abolished at Leu41Ala, Ala44Leu, Cys48Ala and Tyr49Ala. There was significant impairment of cell surface expression of Gln45Ala, Cys48Ala and Tyr49Ala. Cys48 takes part in a highly conserved disulfide bond and is probably needed for correct folding of CLR. The model suggests that Gln45 and Tyr49 mediate their effects by interacting with RAMP1 whereas Leu41 and Ala44 are likely to be involved in binding CGRP. Ile32, Gly35 and Thr37 form a separate cluster of residues which modulate CGRP binding. The results from this study may be applicable to other family B GPCRs which can associate with RAMPs.
Resumo:
The calcitonin gene-related peptide (CGRP) receptor is a complex of a cal-citonin receptor-like receptor (CLR), which is a family B G-protein-coupled receptor (GPCR) and receptor activity modifying protein 1. The role of the second extracellular loop (ECL2) of CLR in binding CGRP and coupling to Gs was investigated using a combination of mutagenesis and modelling. An alanine scan of residues 271-294 of CLR showed that the ability of CGRP to produce cAMP was impaired by point mutations at 13 residues; most of these also impaired the response to adrenomedullin (AM). These data were used to select probable ECL2-modelled conformations that are involved in agonist binding, allowing the identification of the likely contacts between the peptide and receptor. The implications of the most likely structures for receptor activation are discussed. © 2013 The Authors.
Resumo:
The calcitonin gene-related peptide (CGRP) receptor is an unusual G protein-coupled receptor (GPCR) in that it comprises the calcitonin receptor-like receptor (CLR), receptor activity modifying protein 1 (RAMP1) and the receptor component protein (RCP). The RAMP1 has two other homologues – RAMP2 and RAMP3. The endogenous ligand for this receptor is CGRP, a 37 amino acid neuropeptide that act as a vasodilator. This peptide has been implicated in the aetiology of health conditions such as inflammation, Reynaud’s disease and migraine. A clear understanding of the mode of activation of this receptor could be key in developing therapeutic agents for associated health conditions. Although the crystal structure of the N-terminal extracellular domain (ECD) of this receptor (in complex with an antagonist) has been published, the details of receptor-agonist interactions at this domain, and so ultimately the mechanism of receptor activation, are still unclear. Also, the C-terminus of the CLR (in the CGRP receptor), especially around the presumed helix 8 (H8) region, has not been well studied for its role in receptor signalling. This research project investigated these questions. In this study, certain residues making up the putative N-terminal ligand-binding core of the CLR (in the CGRP receptor) were mapped out and found to be crucial for receptor signalling. They included W69 and D70 of the WDG motif in family B GPCRs, as well as Y91, F92, D94 and F95 in loop 2 of CLR N-terminus. Also, F163 at the cytoplasmic end of TM1 and certain residues spanning H8 and associated C-terminal region of CLR were found to be required for CGRP receptor signalling. These residues were investigated by site-directed mutagenesis where they were mutated to alanine (or other residues in specific cases) and the effect of the mutations on receptor pharmacology assessed by evaluating cAMP production, cell surface expression, total cell expression and aCGRP-mediated receptor internalization. Moreover, the N-terminal ECDs of the CLR and RAMPs (RAMP1, RAMP2 and RAMP3) were produced in a yeast host strain (Pichia pastoris) for the purpose of structural interaction study by surface plasmon resonance (SPR). Following expression and purification, these receptor proteins were found to individually retain their secondary structures when analysed by circular dichroism (CD). Results were analysed and interpreted with the knowledge of the secretin family receptor paradigm. The research described in this thesis has produced novel data that contributes to a clearer understanding of CGRP receptor pharmacology. The study on CLR and RAMPs ECDs could be a useful tool in determining novel interacting GPCR partners of RAMPs.
Resumo:
In the present study, the BCAAs (branched-chain amino acids) leucine and valine caused a significant suppression in the loss of body weight in mice bearing a cachexia-inducing tumour (MAC16), producing a significant increase in skeletal muscle wet weight, through an increase in protein synthesis and a decrease in degradation. Leucine attenuated the increased phosphorylation of PKR (double-stranded-RNA-dependent protein kinase) and eIF2α (eukaryotic initiation factor 2α) in skeletal muscle of mice bearing the MAC16 tumour, due to an increased expression of PP1 (protein phosphatase 1). Weight loss in mice bearing the MAC16 tumour was associated with an increased amount of eIF4E bound to its binding protein 4E-BP1 (eIF4E-binding protein 1), and a progressive decrease in the active eIF4G-eIF4E complex due to hypophosphorylation of 4E-BP1. This may be due to a reduction in the phosphorylation of mTOR (mammalian target of rapamycin), which may also be responsible for the decreased phosphorylation of p70S6k (70 kDa ribosomal S6 kinase). There was also a 5-fold increase in the phosphorylation of eEF2 (eukaryotic elongation factor 2), which would also decrease protein synthesis through a decrease in translation elongation. Treatment with leucine increased phosphorylation of mTOR and p70S6k, caused hyperphosphorylation of 4E-BP1, reduced the amount of 4E-BP1 associated with eIF4E and caused an increase in the eIF4G-eIF4E complex, together with a reduction in phosphorylation of eEF2. These changes would be expected to increase protein synthesis, whereas a reduction in the activation of PKR would be expected to attenuate the increased protein degradation. © The Authors.
Resumo:
ABC (ATP-binding-cassette) transporters carry out many vital functions and are involved in numerous diseases, but study of the structure and function of these proteins is often hampered by their large size and membrane location. Membrane protein purification usually utilizes detergents to solubilize the protein from the membrane, effectively removing it from its native lipid environment. Subsequently, lipids have to be added back and detergent removed to reconstitute the protein into a lipid bilayer. In the present study, we present the application of a new methodology for the extraction and purification of ABC transporters without the use of detergent, instead, using a copolymer, SMA (polystyrene-co-maleic acid). SMA inserts into a bilayer and assembles into discrete particles, essentially solubilizing the membrane into small discs of bilayer encircled by a polymer, termed SMALPs (SMA lipid particles). We show that this polymer can extract several eukaryotic ABC transporters, P-glycoprotein (ABCB1), MRP1 (multidrug-resistance protein 1; ABCC1), MRP4 (ABCC4), ABCG2 and CFTR (cystic fibrosis transmembrane conductance regulator; ABCC7), from a range of different expression systems. The SMALP-encapsulated ABC transporters can be purified by affinity chromatography, and are able to bind ligands comparably with those in native membranes or detergent micelles. A greater degree of purity and enhanced stability is seen compared with detergent solubilization. The present study demonstrates that eukaryotic ABC transporters can be extracted and purified without ever being removed from their lipid bilayer environment, opening up awide range of possibilities for the future study of their structure and function. © The Authors Journal compilation © 2014 Biochemical Society.
Resumo:
Abnormal protein aggregates of transactive response (TAR) DNA-binding protein (TDP-43) in the form of neuronal cytoplasmic inclusions (NCI), oligodendroglial inclusions (GI), neuronal internuclear inclusions (NII), and dystrophic neurites (DN) are the pathological hallmark of frontotemporal lobar degeneration with TDP-43 proteinopathy (FTLD-TDP). To investigate the role of phosphorylated TDP-43 (pTDP-43) in neurodegeneration in FTLD-TDP, the spatial patterns of the pTDP-43-immunoreactive NCI, GI, NII, and DN were studied in frontal and temporal cortex in three groups of cases: (1) familial FTLD-TDP caused by progranulin (GRN) mutation, (2) a miscellaneous group of familial cases containing cases caused by valosin-containing protein (VCP) mutation, ubiquitin associated protein 1 (UBAP1) mutation, and cases not associated with currently known genes, and (3) sporadic FTLD-TDP. In a significant number of brain regions, the pTDP-43-immunoreactive inclusions developed in clusters and the clusters were distributed regularly parallel to the tissue boundary. The spatial patterns of the inclusions were similar to those revealed by a phosphorylation-independent anti-TDP-43 antibody. The spatial patterns and cluster sizes of the pTDP-43-immunoreactive inclusions were similar in GRN mutation cases, remaining familial cases, and in sporadic FTLD-TDP. Hence, pathological changes initiated by different genetic factors in familial cases and by unknown causes in sporadic FTLD-TDP appear to follow a parallel course resulting in very similar patterns of degeneration of frontal and temporal lobes.
Resumo:
The calcitonin gene related peptide (CGRP) is a 37 amino acid neuropeptide. Its receptor is a heterodimeric complex of calcitonin receptor-like receptor (CLR) – a family B G-protein coupled receptor – and a single-pass transmembrane protein, receptoractivity modifying protein 1 (RAMP1). Here, we identify residues, within the N-terminal extracellular domain (ECD) of CLR, potentially involved in ligand binding.Certain residues presumed to be possible sites of contact for the CGRP were picked from the CLR/RAMP1 ECD crystal structure (PDB 3N7S). Residues were mutated to alanine (A) bysite-directed mutagenesis (QuikChangeTM, Stratagene). Mutants were analysed for their ability to stimulate cAMP and cell surface expression as previously described [1]. All mutants showed reduced potency, though to varying degrees as indicated by their pEC50 values. W69A and D70Ashowed significant reduction in cell surface expression.These findings suggest that these residues are important for the interaction of CGRP with its receptor. W69A and D70A, part of the WDG motif of family B GPCRs, are thought to rather play a role in receptor stability [2]. The data is consistent with CGRP binding in agroove between CLR and RAMP1. This project was supported byAston School of Life and Health Sciences.References1. Barwell J, Conner A & Poyner D (2011) Extracellular loops 1and 3 and their associated transmembrane regions of the calcitonin receptor-like receptor are needed for CGRP receptor function. Biochim Biophys Acta 1813, 1906–1916.2. Kumar S, Pioszak A, Zhang C et al. (2011) Crystal Structure of the PAC1R Extracellular Domain Unifies a Consensus Fold for Hormone Recognition by Class B G-Protein Cou-pled Receptors. PLoS One 6, e19682
Resumo:
G protein-coupled receptors are allosteric proteins that control transmission of external signals to regulate cellular response. Although agonist binding promotes canonical G protein signalling transmitted through conformational changes, G protein-coupled receptors also interact with other proteins. These include other G protein-coupled receptors, other receptors and channels, regulatory proteins and receptor-modifying proteins, notably receptor activity-modifying proteins (RAMPs). RAMPs have at least 11 G protein-coupled receptor partners, including many class B G protein-coupled receptors. Prototypic is the calcitonin receptor, with altered ligand specificity when co-expressed with RAMPs. To gain molecular insight into the consequences of this protein–protein interaction, we combined molecular modelling with mutagenesis of the calcitonin receptor extracellular domain, assessed in ligand binding and functional assays. Although some calcitonin receptor residues are universally important for peptide interactions (calcitonin, amylin and calcitonin gene-related peptide) in calcitonin receptor alone or with receptor activity-modifying protein, others have RAMP-dependent effects, whereby mutations decreased amylin/calcitonin gene-related peptide potency substantially only when RAMP was present. Remarkably, the key residues were completely conserved between calcitonin receptor and AMY receptors, and between subtypes of AMY receptor that have different ligand preferences. Mutations at the interface between calcitonin receptor and RAMP affected ligand pharmacology in a RAMP-dependent manner, suggesting that RAMP may allosterically influence the calcitonin receptor conformation. Supporting this, molecular dynamics simulations suggested that the calcitonin receptor extracellular N-terminal domain is more flexible in the presence of receptor activity-modifying protein 1. Thus, RAMPs may act in an allosteric manner to generate a spectrum of unique calcitonin receptor conformational states, explaining the pharmacological preferences of calcitonin receptor-RAMP complexes. This provides novel insight into our understanding of G protein-coupled receptor-protein interaction that is likely broadly applicable for this receptor class.