893 resultados para triple-axis diffraction
Resumo:
OBJECTIVES There is a growing understanding of the complexity of interplay between renal and cardiovascular systems in both health and disease. The medical profession has adopted the term "cardiorenal syndrome" (CRS) to describe the pathophysiological relationship between the kidney and heart in disease. CRS has yet to be formally defined and described by the veterinary profession and its existence and importance in dogs and cats warrant investigation. The CRS Consensus Group, comprising nine veterinary cardiologists and seven nephrologists from Europe and North America, sought to achieve consensus around the definition, pathophysiology, diagnosis and management of dogs and cats with "cardiovascular-renal disorders" (CvRD). To this end, the Delphi formal methodology for defining/building consensus and defining guidelines was utilised. METHODS Following a literature review, 13 candidate statements regarding CvRD in dogs and cats were tested for consensus, using a modified Delphi method. As a new area of interest, well-designed studies, specific to CRS/CvRD, are lacking, particularly in dogs and cats. Hence, while scientific justification of all the recommendations was sought and used when available, recommendations were largely reliant on theory, expert opinion, small clinical studies and extrapolation from data derived from other species. RESULTS Of the 13 statements, 11 achieved consensus and 2 did not. The modified Delphi approach worked well to achieve consensus in an objective manner and to develop initial guidelines for CvRD. DISCUSSION The resultant manuscript describes consensus statements for the definition, classification, diagnosis and management strategies for veterinary patients with CvRD, with an emphasis on the pathological interplay between the two organ systems. By formulating consensus statements regarding CvRD in veterinary medicine, the authors hope to stimulate interest in and advancement of the understanding and management of CvRD in dogs and cats. The use of a formalised method for consensus and guideline development should be considered for other topics in veterinary medicine.
Resumo:
Deuterium (δD) and oxygen (δ18O) isotopes are powerful tracers of the hydrological cycle and have been extensively used for paleoclimate reconstructions as they can provide information on past precipitation, temperature and atmospheric circulation. More recently, the use of δ17O excess derived from precise measurement of δ17O and δ18O gives new and additional insights in tracing the hydrological cycle whereas uncertainties surround this proxy. However, 17O excess could provide additional information on the atmospheric conditions at the moisture source as well as about fractionations associated with transport and site processes. In this paper we trace water stable isotopes (δD,δ17O and δ18O) along their path from precipitation to cave drip water and finally to speleothem fluid inclusions for Milandre cave in northwestern Switzerland. A two year-long daily resolved precipitation isotope record close to the cave site is compared to collected cave drip water (3 months average resolution) and fluid inclusions of modern and Holocene stalagmites. Amount weighted mean δD,δ18O and δ17O are -71.0‰, -9.9‰, -5.2‰ for precipitation, -60.3‰, -8.7‰, -4.6‰ for cave drip water and -61.3‰, -8.3‰, -4.7‰ for recent fluid inclusions respectively. Second order parameters have also been derived in precipitation and drip water and present similar values with 18 per meg for 17O excess whereas d-excess is 1.5‰ more negative in drip water. Furthermore, the atmospheric signal is shifted towards enriched values in the drip water and fluid inclusions (Δ of ~ + 10‰ for δD). The isotopic composition of cave drip water exhibits a weak seasonal signal which is shifted by around 8 - 10 months (groundwater residence time) when compared to the precipitation. Moreover, we carried out the first δ17O measurement in speleothem fluid inclusions, as well as the first comparison of the δ17 O behaviour from the meteoric water to the fluid inclusions entrapment in speleothems. This study on precipitation, drip water and fluid inclusions will be used as a speleothem proxy calibration for Milandre cave in order to reconstruct paleotemperatures and moisture source variations for Western Central Europe.
Resumo:
High-pressure powder X-ray diffraction is a fundamental technique for investigating structural responses to externally applied force. Synchrotron sources and two-dimensional detectors are required. In contrast to this conventional setup, high-resolution beamlines equipped with one-dimensional detectors could offer much better resolved peaks but cannot deliver accurate structure factors because they only sample a small portion of the Debye rings, which are usually inhomogeneous and spotty because of the small amount of sample. In this study, a simple method to overcome this problem is presented and successfully applied to solving the structure of an L-serine polymorph from powder data. A comparison of the obtained high-resolution high-pressure data with conventional data shows that this technique, providing up to ten times better angular resolution, can be of advantage for indexing, for lattice parameter refinement, and even for structure refinement and solution in special cases.
Resumo:
Foliar samples were harvested from two oaks, a beech, and a yew at the same site in order to trace the development of the leaves over an entire vegetation season. Cellulose yield and stable isotopic compositions (δ13C, δ18O, and δD) were analyzed on leaf cellulose. All parameters unequivocally define a juvenile and a mature period in the foliar expansion of each species. The accompanying shifts of the δ13C-values are in agreement with the transition from remobilized carbohydrates (juvenile period), to current photosynthates (mature phase). While the opponent seasonal trends of δ18O of blade and vein cellulose are in perfect agreement with the state-of-art mechanistic understanding, the lack of this discrepancy for δD, documented for the first time, is unexpected. For example, the offset range of 18 permil (oak veins) to 57 permil (oak blades) in δD may represent a process driven shift from autotrophic to heterotrophic processes. The shared pattern between blade and vein found for both oak and beech suggests an overwhelming metabolic isotope effect on δD that might be accompanied by proton transfer linked to the Calvin-cycle. These results provide strong evidence that hydrogen and oxygen are under different biochemical controls even at the leaf level.
Resumo:
PURPOSE In acute myeloid leukemia (AML), the transcription factors CEBPA and KLF4 as well as the universal tumor suppressor p53 are frequently deregulated. Here, we investigated the extent of dysregulation, the molecular interactions, and the mechanisms involved. EXPERIMENTAL DESIGN One hundred ten AML patient samples were analyzed for protein levels of CEBPA, KLF4, p53, and p53 modulators. Regulation of CEBPA gene expression by KLF4 and p53 or by chemical p53 activators was characterized in AML cell lines. RESULTS We found that CEBPA gene transcription can be directly activated by p53 and KLF4, suggesting a p53-KLF4-CEBPA axis. In AML patient cells, we observed a prominent loss of p53 function and concomitant reduction of KLF4 and CEBPA protein levels. Assessment of cellular p53 modulator proteins indicated that p53 inactivation in leukemic cells correlated with elevated levels of the nuclear export protein XPO1/CRM1 and increase of the p53 inhibitors MDM2 and CUL9/PARC in the cytoplasm. Finally, restoring p53 function following treatment with cytotoxic chemotherapy compounds and p53 restoring non-genotoxic agents induced CEBPA gene expression, myeloid differentiation, and cell-cycle arrest in AML cells. CONCLUSIONS The p53-KLF4-CEBPA axis is deregulated in AML but can be functionally restored by conventional chemotherapy and novel p53 activating treatments. Clin Cancer Res; 22(3); 746-56. ©2015 AACR.
Resumo:
Bimetallic, oxalate-bridged compounds with bi- and trivalent transition metals comprise a class of layered materials which express a large variety in their molecular-based magnetic behavior. Because of this, the availability of the corresponding single-crystal structural data is essential to the successful interpretation of the experimental magnetic results. We report in this paper the crystal structure and magnetic properties of the ferromagnetic compound {[N(n-C3H7)4][MnIICrIII(C2O4)3]}n (1), the crystal structure of the antiferromagnetic compound {[N(n-C4H9)4][MnIIFeIII(C2O4)3]}n (2), and the results of a neutron diffraction study of a polycrystalline sample of the ferromagnetic compound {[P(C6D5)4][MnIICrIII(C2O4)3]}n (3). Crystal data: 1, rhombohedral, R3c, a = 9.363(3) Å, c = 49.207(27) Å, Z = 6; 2, hexagonal, P63, a = 9.482(2) Å, c = 17.827(8) Å, Z = 2. The structures consist of anionic, two-dimensional, honeycomb networks formed by the oxalate-bridged metal ions, interleaved by the templating cations. Single-crystal field dependent magnetization measurements as well as elastic neutron scattering experiments on the manganese(II)−chromium(III) samples show the existence of long-range ferromagnetic ordering behavior below Tc = 6 K. The magnetic structure corresponds to an alignment of the spins perpendicular to the network layers. In contrast, the manganese(II)−iron(III) compound expresses a two-dimensional antiferromagnetic ordering.
Resumo:
Vertebrate limbs grow out from the flanks of embryos, with their main axis extending proximodistally from the trunk. Distinct limb domains, each with specific traits, are generated in a proximal-to-distal sequence during development. Diffusible factors expressed from signalling centres promote the outgrowth of limbs and specify their dorsoventral and anteroposterior axes. However, the molecular mechanism by which limb cells acquire their proximodistal (P-D) identity is unknown. Here we describe the role of the homeobox genes Meis1/2 and Pbx1 in the development of mouse, chicken and Drosophila limbs. We find that Meis1/2 expression is restricted to a proximal domain, coincident with the previously reported domain in which Pbx1 is localized to the nucleus, and resembling the distribution of the Drosophila homologues homothorax (hth) and extradenticle (exd); that Meis1 regulates Pbx1 activity by promoting nuclear import of the Pbx1 protein; and that ectopic expression of Meis1 in chicken and hth in Drosophila disrupts distal limb development and induces distal-to-proximal transformations. We suggest that restriction of Meis1/Hth to proximal regions of the vertebrate and insect limb is essential to specify cell fates and differentiation patterns along the P-D axis of the limb.
Resumo:
Mammalian COP9 signalosome, which connects signaling with the ubiquitin-mediated proteasome degradation pathway, is implicated in cell cycle regulation and DNA damage response. However, whether COP9 is dysregulated in cancers has not been well established. Here, we showed that COP9 subunit 6 (CSN6) was upregulated in malignant breast and thyroid tumors and positively correlated with MDM2 expression. Investigation of the underlying mechanism suggested that CSN6 stabilized MDM2, thereby accelerating the degradation of p53. We generated mice carrying a targeted disruption of the Csn6 gene, and found that the mice with both alleles disrupted (Csn6-/- ) died in early embryogenesis (E7.5). Csn6+/- mice were sensitized to undergo γ-radiation-induced p53-dependent apoptosis in both thymus and developing central nervous system. Consequently. Csn6 +/- mice were more susceptible to the lethal effects of high-dose γ-radiation than wild-type mice. Notably, Csn6+/- mice were less susceptible to γ-radiation-induced tumorigenesis and had better long-term survival after low-dose γ-radiation exposure compared with wild-type animals, indicating that loss of CSN6 enhanced p53-mediated tumor suppression in vivo. In summary, the regulation of MDM2-p53 signaling by CSN6 plays a significant role in DNA damage-mediated apoptosis and tumorigenesis, which suggests that CSN6 may potentially be a valuable diagnostic marker for cancers with a dysregulated MDM2-p53 axis. ^
Resumo:
Objectives. Triple Negative Breast Cancer (TNBC) lack expression of estrogen receptors (ER), progesterone receptors (PR), and absence of Her2 gene amplification. Current literature has identified TNBC and over-expression of cyclo-oxygenase-2 (COX-2) protein in primary breast cancer to be independent markers of poor prognosis in terms of overall and distant disease free survival. The purpose of this study was to compare COX-2 over-expression in TNBC patients to those patients who expressed one or more of the three tumor markers (i.e. ER, and/or PR, and/or Her2).^ Methods. Using a secondary data analysis, a cross-sectional design was implemented to examine the association of interest. Data collected from two ongoing protocols titled "LAB04-0657: a model for COX-2 mediated bone metastasis (Specific aim 3)" and "LAB04-0698: correlation of circulating tumor cells and COX-2 expression in primary breast cancer metastasis" was used for analysis. A sample of 125 female patients was analyzed using Chi-square tests and logistic regression models. ^ Results. COX-2 over-expression was present in 33% (41/125) and 28% (35/124) patients were identified as having TNBC. TNBC status was associated with elevated COX-2 expression (OR= 3.34; 95% CI= 1.40–8.22) and high tumor grade (OR= 4.09; 95% CI= 1.58–10.82). In a multivariable analysis, TNBC status was an important predictor of COX-2 expression after adjusting for age, menopausal status, BMI, and lymph node status (OR= 3.31; 95% CI: 1.26–8.67; p=0.01).^ Conclusion. TNBC is associated with COX-2 expression—a known marker of poor prognosis in patients with operable breast cancer. Replication of these results in a study with a larger sample size, or a future randomized clinical trial demonstrating an improved prognosis with COX-2 suppression in these patients would support this hypothesis.^
Resumo:
Background. Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death among females, accounting for 23% (1.38 million) of the total new cancer cases and 14% (458,400) of the total cancer deaths in 2008. [1] Triple-negative breast cancer (TNBC) is an aggressive phenotype comprising 10–20% of all breast cancers (BCs). [2-4] TNBCs show absence of estrogen, progesterone and HER2/neu receptors on the tumor cells. Because of the absence of these receptors, TNBCs are not candidates for targeted therapies. Circulating tumor cells (CTCs) are observed in blood of breast cancer patients even at early stages (Stage I & II) of the disease. Immunological and molecular analysis can be used to detect the presence of tumor cells in the blood (Circulating tumor cells; CTCs) of many breast cancer patients. These cells may explain relapses in early stage breast cancer patients even after adequate local control. CTC detection may be useful in identifying patients at risk for disease progression, and therapies targeting CTCs may improve outcome in patients harboring them. Methods . In this study we evaluated 80 patients with TNBC who are enrolled in a larger prospective study conducted at M D Anderson Cancer Center in order to determine whether the presence of circulating tumor cells is a significant prognostic factor in relapse free and overall survival . Patients with metastatic disease at the time of presentation were excluded from the study. CTCs were assessed using CellSearch System™ (Veridex, Raritan, NJ). CTCs were defined as nucleated cells lacking the presence of CD45 but expressing cytokeratins 8, 18 or 19. The distribution of patient and tumor characteristics was analyzed using chi square test and Fisher's exact test. Log rank test and Cox regression analysis was applied to establish the association of circulating tumor cells with relapse free and overall survival. Results. The median age of the study participants was 53years. The median duration of follow-up was 40 months. Eighty-eight percent (88%) of patients were newly diagnosed (without a previous history of breast cancer), and (60%) of patients were chemo naïve (had not received chemotherapy at the time of their blood draw for CTC analysis). Tumor characteristics such as stage (P=0.40), tumor size (P=69), sentinel nodal involvement (P=0.87), axillary lymph node involvement (P=0.13), adjuvant therapy (P=0.83), and high histological grade of tumor (P=0.26) did not predict the presence of CTCs. However, CTCs predicted worse relapse free survival (1 or more CTCs log rank P value = 0.04, at 2 or more CTCs P = 0.02 and at 3 or more CTCs P < 0.0001) and overall survival (at 1 or more CTCs log rank P value = 0.08, at 2 or more CTCs P = 0.01 and at 3 or more CTCs P = 0.0001. Conclusions. The number of circulating tumor cells predicted worse relapse free survival and overall survival in TNBC patients.^
Resumo:
Triple-negative breast cancers (TNBC) are characterized by the lack of or reduced expression of the estrogen and progesterone receptors, and normal expression of the human epidermal growth factor receptor 2. The lack of a well-characterized target for treatment leaves only systemic chemotherapy as the mainstay of treatment. Approximately 60-70% of patients are chemosensitive, while the remaining majority does not respond. Targeted therapies that take advantage of the unique molecular perturbations found in triple-negative breast cancer are needed. The genes that are frequently amplified or overexpressed represent potential therapeutic targets for triple-negative breast cancer. The purpose of this study was to identify and validate novel therapeutic targets for triple-negative breast cancers. 681 genes showed consistent and highly significant overexpression in TNBC compared to receptor-positive cancers in 2 data sets. For two genes, 3 of the 4 siRNAs showed preferential growth inhibition in TNBC cells. These two genes were the low density lipoprotein receptor-related protein 8 (LRP8) and very low-density lipoprotein receptor (VLDLR). Exposure to their cognate ligands, reelin and apolipoprotein E isoform 4 (ApoE4), stimulated the growth of TNBC cells in vitro. Suppression of the expression of either LRP8 or VLDLR or exposure to RAP (an inhibitor of ligand binding to LRP8 and VLDLR) abolished this ligand-induced proliferation. High-throughput protein and metabolic arrays revealed that ApoE4 stimulation rescued TNBC cells from serum-starvation induced up-regulation of genes involved in lipid biosynthesis, increased protein expression of oncogenes involved in the MAPK/ERK and DNA repair pathways, and reduced the serum-starvation induction of biochemicals involved in oxidative stress response and glycolytic metabolism. shLRP8 MDA-MB-231 xenografts had reduced tumor volume, in comparison to parental and shCON xenografts. These results indicate that LRP8-APOE signaling confers survival advantages to TNBC tumors under reduced nutrient conditions and during cellular environmental stress. We revealed that the LRP8-APOE receptor-ligand system is overexpressed in human TNBC. We also demonstrated that this receptor system mediates a strong growth promoting and survival function in TNBC cells in vitro and helps to sustain the growth of MDA-MD-231 xenografts. We propose that inhibitors of LRP8-APOE signaling may be clinically useful therapeutic agents for triple-negative breast cancer.