892 resultados para the ‘Modern’ Workplace


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Major element chemistry of basalt from the southern East Pacific Rise (EPR) is different from that of the EPR at the time of the formation of the Pacific Plate at 170 Ma.Glass recovered from Jurassic age (170 Ma) Pacific ocean crust (Bartolini and Larson, 2001, doi:10.1130/0091-7613(2001)029<0735:PMATPS>2.0.CO;2) at Ocean Drilling Program Hole 801C records higher Fe8 (10.77 wt%) and marginally lower Na8 (2.21 wt%) compared to the modern EPR, suggesting deeper melting and a temperature of initial melting that was 60°C hotter than today.Trace element ratios such as La/Sm and Zr/Y, on the other hand, show remarkable similarities to the modern southern EPR, indicating that Site 801 was not generated on a hotspot-influenced ridge and that mantle composition has changed little in the Pacific over the past 170 Ma. Our results are consistent with the observation that mid-ocean ridge basalts (MORBs) older than 80 Ma were derived by higher temperature melting than are modern MORBs (Humler et al., 1999, doi:10.1016/S0012-821X(99)00218-6), which may have been a consequence of the Cretaceous superplume event in the Pacific.Site 801 predates the formation of Pacific oceanic plateaus and 801C basalt chemistry indicates that higher temperatures of mantle melting beneath Pacific ridges preceded the initiation of the superplume.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ice core records demonstrate a glacial-interglacial atmospheric CO2 increase by ~100 ppm, while 14C calibration efforts document a strong decrease in atmospheric 14C concentration during this period. A calculated transfer of ~530 Gt of 14C depleted carbon is required to produce the deglacial coeval rise of carbon in the atmosphere and terrestrial biosphere. This amount is usually ascribed to oceanic carbon release, although the actual mechanisms remained elusive, since an adequately old and carbon-enriched deep-ocean reservoir seemed unlikely. Here we present a new, though still fragmentary, ocean-wide d14C dataset showing that during the Last Glacial Maximum (LGM) and Heinrich Stadial 1 (HS-1) the maximum 14C age difference between ocean deep waters and the atmosphere exceeded the modern values by up to 1500 14C yr, in the extreme reaching 5100 14C yr. Below 2000 m depth the 14C ventilation age of modern ocean waters is directly linked to the concentration of dissolved inorganic carbon (DIC). We propose as working hypothesis that the modern regression of DIC vs d14C also applies for LGM times, which implies that a mean LGM aging by ~600 14C yr corresponded to a global rise of ~85-115 µmol DIC/kg in the deep ocean. Thus, the prolonged residence time of ocean deep waters may indeed have made it possible to absorb an additional ~730-980 Gt DIC, one third of which possibly originated from intermediate waters. We also infer that LGM deep-water O2 dropped to suboxic values of <10µmol/kg in the Atlantic sector of the Southern Ocean, possibly also in the subpolar North Pacific. The outlined deglacial transfer of the extra aged, deep-ocean carbon to the atmosphere via the dynamic ocean-atmosphere carbon exchange would be sufficient to account for two trends observed, (1) for the increase in atmospheric CO2 and (2) for the 190-permil drop in atmospheric d14C during the so-called HS-1 'Mystery Interval', when atmospheric 14C production rates were largely constant.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A sedimentological and palynological study of three sediment cores from the northern Mekong River Delta shows the regional sedimentary and environmental development since the mid-Holocene sea level highstand. A sub- to intertidal flat deposit of mid-Holocene age is recorded in the northernmost core. Shoreline deposits in all three cores show descending ages from N to S documenting 1) the early stages of the late Holocene regression and 2) the subsequent delta progradation. The delta plain successions vary from floodplain deposits with swamp-like elements to natural levee sediments. The uppermost sediments in all cores show human disturbance to varying degrees. The most intense alteration is recorded in the northernmost core where the palynological signal together with a charcoal peak indicates the profound change of the environment during the modern land reclamation. The sediments from at least one of the three presented cores do not show a "true" delta facies succession, but rather estuary-like features, as also observed in records from southern Cambodia. This absence is probably due to lack of accommodation space during the initial phase of rapid delta progradation which impeded the development of "true" delta successions as shown in cores from the southern Mekong River Delta.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stable isotope data on benthic foraminifera from more than 30 cores on the northern Emperor Seamounts and in the Okhotsk Sea are synthesized in paleohydrographic profiles spanning the depth range 1000-4000 m. Holocene (core-top) benthic foraminiferal d18O and d13C data are calibrated to modern hydrographic properties through measurements of d13C of SumCO2 and d18O of seawater. Cibicidoides stable isotope ratios are close to the d13C and equilibrium d18O of seawater, whereas Uvigerina d18O and d13C are variably offset from Cibicidoides. Glacial maximum d13C of Cibicidoides displays a different vertical profile than that of the Holocene. When results are adjusted by +0.32 per mil to account for the secular change in d13C during the last glacial maximum, the data coincide with the modern seawater and foraminiferal curves deeper than ~2 km. However, at shallower depths d13C gradually increases by as much as 1 per mil above the modern value. Furthermore, above 2 km the benthic d18O decreases by ~0.5 per mil. These results are consistent with a benthic front at ~2 km in the North Pacific (see Herguera et al., 1992), but they differ from interpretations based on trace metal data which indicate a source of nutrient-depleted deep water during glaciation. The isotopic data suggest that during glaciation there was a better ventilated watermass at intermediate depths in the far northwestern Pacific, it was relatively fresher than deep waters there, and deep waters were as nutrient-rich as today.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cores from four Ocean Drilling Program (ODP) sites were examined for planktonic foraminifers. One sample per core (from core-catchers in Holes 806B and 807B and from Section 4 in Holes 847B and 852B) was examined through the interval representing the last 5.8 m.y. Sites 806 (0°19.1'N; 159°21.7'E) and 847 (0o12.1'N; 95°19.2'W) are beneath the equatorial divergence zone. Sites 807 (3°36.4'N; 156°37.5'E) and 852 (5°19.6'N; 110°4.6'W) are located north of the equator in the convergence zone created by the interaction of the westward-flowing South Equatorial Current (SEC) and the eastward-flowing North Equatorial Countercurrent (NECC). Specimens were identified to species and then grouped according to depth habitat and trophic level. Species richness and diversity were also calculated. Tropical neogloboquadrinids have been more abundant in the eastern than in the western equatorial Pacific Ocean throughout the last 5.8 m.y. During the mid-Pliocene (3.8-3.2 Ma), their abundance increased at all sites, while during the Pleistocene (after ~ 1.6 Ma), they expanded in the east and declined in the west. This suggests an increase in surface-water productivity across the Pacific Ocean during the closing of the Central American seaway and an exacerbation of the productivity asymmetry between the eastern and western equatorial regions during the Pleistocene. This faunal evidence agrees with eolian grain-size data (Hovan, 1995) and diatom flux data (Iwai, this volume), which suggest increases in tradewind strength in the eastern equatorial Pacific that centered around 3.5 and 0.5 Ma. The present longitudinal zonation of thermocline dwelling species, a response to the piling of warm surface water in the western equatorial region of the Pacific, seems to have developed after 2.4 Ma, not directly after the closing of the Panama seaway (3.2 Ma). Apparently, after 2.4 Ma, the piling warm water in the west overwhelmed the upwelling of nutrients into the photic zone in that region, creating the Oceanographic asymmetry that exists in the modern tropical Pacific and is reflected in the microfossil record. In the upper Miocene and lower Pliocene sediments, the ratio of thermocline-dwelling species to mixed-layer dwellers is 60%:40%. During the mid-Pliocene, the western sites became 40% thermocline and 60% mixed-layer dwellers. Subsequent to -2.4 Ma, the asymmetry increased to 20%: 80% in the west and the reverse in the east. This documents the gradual thickening of the warm-water layer piled up in the western tropical Pacific over the last 5.8 m.y. and reveals two "steps" in the biotic trend that can be associated with specific events in the physical environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To assess the relationship of radiolarian production, species distribution in water and surface sediment to water-mass characteristics, biological productivity and export regimes in the Sea of Okhotsk (SOk) we accomplished a quantitative analysis of radiolarian assemblages obtained from 35 surface-sediment samples and 115 plankton samples recording the radiolarian depth distribution in the upper 1000 m of the water column at 23 locations. This study augments the knowledge on the autecological demands of radiolarians dwelling in a specific hydrographic and biological environment, and extracts new information on the significance of radiolarians for the assessment of past oceanographic and climatic development in high latitudes. Highest radiolarian accumulation rates and seasonal radiolarian standing stocks are encountered in the western part of the SOk close to Sakhalin, marking the environmental conditions in this area as most favorable for radiolarian production. Maximum standing stocks occur during summer, indicating that the radiolarian signal preserved in the sediment record is mainly produced during this season when the mesopelagic biomass is at highest activity. We identified seven radiolarian species and groups related to specific water-mass characteristics, depth habitats, and productivity regimes. Of those, Dictyophimus hirundo and Cycladophora davisiana are most prominent in the Sea of Okhotsk Intermediate Water (200-1000 m), the latter representing an indicator of the occurrence of cold and well ventilated intermediate/deep water and enhanced export of organic matter from a highly productive ocean surface. While Antarctissa (?) sp. 1 is typically related to the cold-water Sea of Okhotsk Dicothermal Layer (SODL), ranging between 50 and 150 m water depth, the surface waters above the SODL affected by strong seasonal variability are inhabited predominantly by taxa belonging to the Spongodiscidae, having a broad environmental tolerance. Taxa only found in the sediment record show that the plankton study did not cover all assemblages occurring in the modern SOk. This accounts for an assemblage restricted to the western Kurile Basin and apparently related to environmental conditions influenced by North Pacific and Japan Sea waters. Other important taxa include species of the Plagoniidae group, representing the most prominent contributors to the SOk plankton and surface sediments. These radiolarians show a more opportunistic occurrence and are indicative of high nutrient supply in a hydrographic environment characterized by pronounced stratification enhancing heterotrophic activity and phytodetritus export.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The disappearance at ~10 Ma of the deep dwelling planktonic foraminifer Globoquadrina dehiscens from the western Pacific including the South China Sea was about 3 Myr earlier than its final extinction elsewhere. Accompanying this event at ~10 Ma was a series of faunal turnover characterized by increase in mixed layer, warm-water species and decrease to a minimum in deepwater species. Paleobiological and isotopic evidence indicates sea surface warming and a deepened local thermocline that we interpret as related to the development of an early western Pacific warm pool. The stepwise decline of G. dehiscens and other deep dwelling species from the NW and SW Pacific suggests more intensive warm water pileup than equatorial localities where surface bypass flow through the narrowing Indonesia seaway appears to remain efficient during the late Miocene. Planktonic delta18O values from the South China Sea consistently lighter than the tropical western Pacific during the Miocene also suggest, similar to today, more variable hydrologic conditions along the periphery than in the core of the warm pool. Stronger hydrologic variability affected mainly by monsoons and increased thermal gradient along the western margin of the late Miocene warm pool may have contributed to the decline of deep dwelling planktonic species including the early extinction of G. dehiscens from the South China Sea region. The late Miocene warm pool became influential and paleobiologically detectable from ~10 Ma, but the modern warm pool did not appear until about 4 Ma, in the middle Pliocene.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A variety of evidence suggests that average sea surface temperatures (SSTs) during the last glacial maximum in the California Borderlands region were significantly colder than during the Holocene. Planktonic foraminiferal delta18O evidence and average SST estimates derived by the modern analog technique indicate that temperatures were 6°-10°C cooler during the last glacial relative to the present. The glacial plankton assemblage is dominated by the planktonic foraminifer Neogloboquadrina pachyderma (sinistral coiling) and the coccolith Coccolithus pelagicus, both of which are currently restricted to subpolar regions of the North Pacific. The glacial-interglacial average SST change determined in this study is considerably larger than the 2°C change estimated by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981]. We propose that a strengthened California Current flow was associated with the advance of subpolar surface waters into the Borderlands region during the last glacial.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Time series of alkenone unsaturation indices gathered along the California margin reveal large (4° to 8°C) glacial-interglacial changes in sea surface temperature (SST) over the past 550,000 years. Interglacial times with SSTs equal to or exceeding that of the Holocene contain peak abundances in the pollen of redwood, the distinctive component of the temperate rainforest of the northwest coast of California. In the region now dominated by the California Current, SSTs warmed 10,000 to 15,000 years in advance of deglaciation at each of the past five glacial maxima. SSTs did not rise in advance of deglaciation south of the modern California Current front. Glacial warming along the California margin therefore is a regional signal of the weakening of the California Current during times when large ice sheets reorganized wind systems over the North Pacific. Both the timing and magnitude of the SST estimates suggest that the Devils Hole (Nevada) calcite record represents regional but not global paleotemperatures, and hence does not pose a fundamental challenge to the orbital ("Milankovitch") theory of the Ice Ages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sannai-Maruyama is one of the most famous and best-researched mid-Holocene (mid-Jomon) archaeological sites in Japan, because of a large community of people for a long period. Archaeological studies have shown that the Jomon people inhabited the Sannai-Maruyama site from 5.9-4.2 +/- 0.1 cal. kyr B.P. However, a continuous record of the terrestrial and marine environments around the site has not been available. Core KT05-7 PC-02, was recovered from Mutsu Bay, only 20 km from the site, for the reconstruction of high-resolution time series of environmental records, including sea surface temperature (SST). C37 alkenone SSTs showed clear fluctuations, with four periods of high (8.4-7.9, 7.0-5.9, 5.1-4.1, and 2.3-1.4 cal. kyr B.P.) and four of low (-8.4, 7.9-7.0, 5.9-5.1, and 4.1-2.3 cal. kyr B.P.) SST. Thus, each SST cycle lasted 1.0-2.0 kyr, and the amplitude of fluctuation was about 1.5-2.0 °C. Total organic carbon (TOC) and C37 alkenone contents, and the TOC/total nitrogen ratio indicate that marine biogenic production was low before 7.0 cal. kyr B.P., but was clearly increased between 5.9 and 4.0 cal. kyr B.P., because of stronger vertical mixing. During the period when the community at the site prospered (between 5.9 and 4.2 +/- 0.1 cal. kyr B.P.), the terrestrial climate was relatively warm. The high relative abundance of pollen of both Castanea and Quercus subgen. Cyclobalanopsis supports the interpretation that the local climate was optimal for human habitation. Between 5.9 and 5.1 cal. kyr B.P., in spite of warm terrestrial climates, the C37 alkenone SST was low; this apparent discrepancy may be attributed to the water column structure in the Tsugaru Strait, which differed from the modern condition. The evidence suggests that at about 5.9 cal. kyr B.P, high productivity of marine resources such as fish and shellfish and a warm terrestrial climate led to the establishment of a human community at the Sannai-Maruyama site. Then, at about 4.1 +/- 0.1 cal. kyr B.P., abrupt marine and terrestrial cooling, indicated by a decrease of about 2 °C in the C37 alkenone SST and an increase in pollen of taxa of cooler climates, led to a reduced terrestrial food supply, causing the people to abandon the site. The timing of the abandonment is consistent with the timing (around 4.0-4.3 cal. kyr B.P.) of the decline of civilizations in north Mesopotamia and along the Yangtze River. These findings suggest that a temperature rise of ~2 °C in this century as a result of global warming could have a great impact on the human community and especially on agriculture, despite the advances of contemporary society.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Deepwater circulation plays an important role in climate modulation through its redistribution of heat and salt and its control of atmospheric CO2. Oppo and Fairbanks (1987, doi:10.1016/0012-821X(87)90183-X) showed that the Southern Ocean is an excellent monitor of deepwater circulation changes for two reasons: (1) the Southern Ocean is a mixing reservoir for incoming North Atlantic Deep Water and recirculated water from the Pacific and Indian oceans; and (2) the nutrient/delta13C tracers of deepwater are not significantly changed by surficial processes within the Southern Ocean. We can extend these principles to the late Miocene because tectonic changes in the Oligocene and early and middle Miocene developed near-modern basinal configurations. However, on these time scales, changes in the oceanic carbon reservoir and mean ocean nutrient levels also affect the delta13C differences between ocean basins. From 9.8 to 9.3 Ma, Southern Ocean delta13C values oscillated between high North Atlantic values and low Pacific values. The Southern Ocean recorded delta13C values similar to Pacific values from 9.2 to 8.9 Ma, reflecting a low contribution of Northern Component Water (NCW). The delta13C differences between the NCW and Pacific Outflow Water (POW) end-members were low from 8.9 to 8.0 Ma, making it difficult to discern circulation patterns. NCW production may have completely shutdown at 8.6 Ma, allowing Southern Component Water (SCW) to fill the North Atlantic and causing the delta13C values in the North Atlantic, Pacific, and Southern oceans to converge. Deepwater delta13C patterns resembling the modern distributions evolved by 7.0 Ma: delta13C values were near 1.0 per mil in the North Atlantic; 0.0 per mil in the Pacific; and 0.5 per mil in the Southern Ocean. Development of near-modern delta13C distributions by 7.0 Ma resulted not only from an increase in NCW flux but also from an increase in deepwater nutrient levels. Both of these processes increased the delta13C difference between the North Atlantic and Pacific oceans. Deepwater circulation patterns similar to today's operated as early as 9.8 Ma, but were masked by the lower nutrient/delta13C differences. During the late Miocene, 'interglacial' intervals prevailed during intervals of NCW production, while 'glacial' intervals occurred during low NCW production.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

High-resolution quantitative diatom data are tabulated for the early part of the late Pliocene ( 3.25 to 2.08 Ma ) at DSDP Site 580 in the northwestern Pacific. Sample spacing averages 11 k.y. between 3.1 and 2.8 Ma, but increases to 14 to 19 k.y. prior to 3.1 Ma and after 2.8 Ma. Q-mode factor analysis of the middle Pliocene assemblage reveals four factors which explain 92.4% of the total variance of the 47 samples studied between 3.25 and 2.55 Ma. Three of the factors are closely related to modern subarctic, transitional, and subtropical elements, while the fourth factor, which is dominated by Coscinodiscus marginatus and the extinct Pliocene species Neodenticula kamtschatica, appears to correspond to a middle Pliocene precursor of the subarctic water mass. Knowledge of the modern and generalized Pliocene paleoclimatic relationships of various diatom taxa is used to generate a paleoclimate curve ("Twt") based on the ratio of warm-water (subtropical) to cold-water diatoms with warm-water transitional taxa (Thalassionema nitzschioides, Thalassiosira oestrupii, and Coscinodiscus radiatus) factored into the equation at an intermediate (0.5) value. The "Twt" ratios at more southerly DSDP Sites 579 and 578 are consistently higher (warmer) than those at Site 580 throughout the Pliocene, suggesting the validity of the ratio as a paleoclimatic index. Diatom paleoclimatic data reveal a middle Pliocene (3.1 to 3.0 Ma) warm interval at Site 580 during which paleotemperatures may have exceeded maximum Holocene values by 3 °- 5.5 °C at least three times. This middle Pliocene warm interval is also recognized by planktic foraminifers in the North Atlantic, and it appears to correspond with generalized depleted oxygen isotope values suggesting polar warming. The diatom "Twt" curve for Site 580 compares fairly well with radiolarian and silicoflagellate paleoclimatic curves for Site 580, planktic foraminiferal sea-surface temperature estimates for the North Atlantic, and benthic oxygen isotope curves for late Pliocene, although higher resolution studies on paired samples are required to test the correspondence of these various paleoclimatic indices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

According to the drilling probes of the Deep Waier Drilling Project, Neogene sediments in a tropical area of the Pacific Ocean are divided into 15 zones based on diatoms. The author shows that a unique zonation may be applied for the entire region. Identification of diatoms zones boundaries was conducted through their direct correlation with nannoplancton, radiolarian and foraminiferal zonal sceals. Their ultra-structure and morphological relationship are being analysed. The mode of siliceous accumulation within the equatorial belt differed through the western central and eastern region since the early Miocene and the difference become more evident from the end of Middle Miocene. The distribution of Neogene diatomaceous silt in the tropical area is controlled by the character of gyre-water circulation and agrees with the modern geographical zonation.