985 resultados para target classification
Resumo:
为测量重离子加速器冷却储存环(HIRFL-CSR)的外靶实验终端上不同能量的γ射线,一种用于探测γ射线的高能量分辨的探测装置正在中国科学院近代物理研究所建设,该探测器由中国科学院近代物理研究所自行生长的铊激活的碘化铯CsI(Tl)晶体组成。与日本Hamamatsu公司生产的S8664-1010型雪崩光二极管(APD)耦合,测试其光输出的非均匀性和能量分辨,从测试结果给出了所需CsI(Tl)晶体合格的标准。目前已完成该γ探测球计划的六分之一,所提供的晶体合格率达94%以上。
Resumo:
介绍了国家重大科学工程项目——兰州重离子加速器冷却存储环(HIRFL-CSR)的实验环(CSRe)团簇内靶温度闭环控制器的设计。该控制器给气体喷嘴处测温电阻提供长时间稳定度为0.1%的1mA恒定电流,通过12位ADC得到喷嘴温度,并通过混合信号处理器MSP430F149来实现制冷/加热闭环操作。在多种不同实验气体的情况下,该控制器的温度控制精度小于0.5K。目前,该控制器在现场工作良好。
Resumo:
The emittance of an extracted ion beam can be estimated to first order by a series of three linear independent profile measurements. This estimation is restricted to the evaluation of an upper limit of the emittance value for a homogeneous, nonfilamented beam. The beam is assumed to be round, respectively elliptical, without any structure of the intensity distribution, no space charge has been assumed for the drifting beam, and the optics is assumed to be linear. Instead of using three different drift sections, a linear focusing element with three different focusing strengths can be used. Plotting the beam radius as function of focusing strength, three independent solutions can be used to calculate the Twiss parameters alpha, beta, and gamma and furthermore the emittance epsilon. Here we describe the measurements which have been performed with the SECRAL ion source at Institute of Modern Physics Lanzhou.
Resumo:
Nucleosides in human urine and serum have frequently been studied as a possible biomedical marker for cancer, acquired immune deficiency syndrome (AIDS) and the whole-body turnover of RNAs. Fifteen normal and modified nucleosides were determined in 69 urine and 42 serum samples using high-performance liquid chromatography (HPLC). Artificial neural networks have been used as a powerful pattern recognition tool to distinguish cancer patients from healthy persons. The recognition rate for the training set reached 100%. In the validating set, 95.8 and 92.9% of people were correctly classified into cancer patients and healthy persons when urine and serum were used as the sample for measuring the nucleosides. The results show that the artificial neural network technique is better than principal component analysis for the classification of healthy persons and cancer patients based on nucleoside data. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The aim of this paper is to show that Dempster-Shafer evidence theory may be successfully applied to unsupervised classification in multisource remote sensing. Dempster-Shafer formulation allows for consideration of unions of classes, and to represent both imprecision and uncertainty, through the definition of belief and plausibility functions. These two functions, derived from mass function, are generally chosen in a supervised way. In this paper, the authors describe an unsupervised method, based on the comparison of monosource classification results, to select the classes necessary for Dempster-Shafer evidence combination and to define their mass functions. Data fusion is then performed, discarding invalid clusters (e.g. corresponding to conflicting information) thank to an iterative process. Unsupervised multisource classification algorithm is applied to MAC-Europe'91 multisensor airborne campaign data collected over the Orgeval French site. Classification results using different combinations of sensors (TMS and AirSAR) or wavelengths (L- and C-bands) are compared. Performance of data fusion is evaluated in terms of identification of land cover types. The best results are obtained when all three data sets are used. Furthermore, some other combinations of data are tried, and their ability to discriminate between the different land cover types is quantified
Resumo:
Decision tree classification algorithms have significant potential for land cover mapping problems and have not been tested in detail by the remote sensing community relative to more conventional pattern recognition techniques such as maximum likelihood classification. In this paper, we present several types of decision tree classification algorithms arid evaluate them on three different remote sensing data sets. The decision tree classification algorithms tested include an univariate decision tree, a multivariate decision tree, and a hybrid decision tree capable of including several different types of classification algorithms within a single decision tree structure. Classification accuracies produced by each of these decision tree algorithms are compared with both maximum likelihood and linear discriminant function classifiers. Results from this analysis show that the decision tree algorithms consistently outperform the maximum likelihood and linear discriminant function classifiers in regard to classf — cation accuracy. In particular, the hybrid tree consistently produced the highest classification accuracies for the data sets tested. More generally, the results from this work show that decision trees have several advantages for remote sensing applications by virtue of their relatively simple, explicit, and intuitive classification structure. Further, decision tree algorithms are strictly nonparametric and, therefore, make no assumptions regarding the distribution of input data, and are flexible and robust with respect to nonlinear and noisy relations among input features and class labels.
Resumo:
Over last two decades, numerous studies have used remotely sensed data from the Advanced Very High Resolution Radiometer (AVHRR) sensors to map land use and land cover at large spatial scales, but achieved only limited success. In this paper, we employed an approach that combines both AVHRR images and geophysical datasets (e.g. climate, elevation). Three geophysical datasets are used in this study: annual mean temperature, annual precipitation, and elevation. We first divide China into nine bio-climatic regions, using the long-term mean climate data. For each of nine regions, the three geophysical data layers are stacked together with AVHRR data and AVHRR-derived vegetation index (Normalized Difference Vegetation Index) data, and the resultant multi-source datasets were then analysed to generate land-cover maps for individual regions, using supervised classification algorithms. The nine land-cover maps for individual regions were assembled together for China. The existing land-cover dataset derived from Landsat Thematic Mapper (TM) images was used to assess the accuracy of the classification that is based on AVHRR and geophysical data. Accuracy of individual regions varies from 73% to 89%, with an overall accuracy of 81% for China. The results showed that the methodology used in this study is, in general, feasible for large-scale land-cover mapping in China.
Resumo:
Semisupervised dimensionality reduction has been attracting much attention as it not only utilizes both labeled and unlabeled data simultaneously, but also works well in the situation of out-of-sample. This paper proposes an effective approach of semisupervised dimensionality reduction through label propagation and label regression. Different from previous efforts, the new approach propagates the label information from labeled to unlabeled data with a well-designed mechanism of random walks, in which outliers are effectively detected and the obtained virtual labels of unlabeled data can be well encoded in a weighted regression model. These virtual labels are thereafter regressed with a linear model to calculate the projection matrix for dimensionality reduction. By this means, when the manifold or the clustering assumption of data is satisfied, the labels of labeled data can be correctly propagated to the unlabeled data; and thus, the proposed approach utilizes the labeled and the unlabeled data more effectively than previous work. Experimental results are carried out upon several databases, and the advantage of the new approach is well demonstrated.
Resumo:
Orthogonal neighborhood-preserving projection (ONPP) is a recently developed orthogonal linear algorithm for overcoming the out-of-sample problem existing in the well-known manifold learning algorithm, i.e., locally linear embedding. It has been shown that ONPP is a strong analyzer of high-dimensional data. However, when applied to classification problems in a supervised setting, ONPP only focuses on the intraclass geometrical information while ignores the interaction of samples from different classes. To enhance the performance of ONPP in classification, a new algorithm termed discriminative ONPP (DONPP) is proposed in this paper. DONPP 1) takes into account both intraclass and interclass geometries; 2) considers the neighborhood information of interclass relationships; and 3) follows the orthogonality property of ONPP. Furthermore, DONPP is extended to the semisupervised case, i.e., semisupervised DONPP (SDONPP). This uses unlabeled samples to improve the classification accuracy of the original DONPP. Empirical studies demonstrate the effectiveness of both DONPP and SDONPP.
Resumo:
Inspired by human visual cognition mechanism, this paper first presents a scene classification method based on an improved standard model feature. Compared with state-of-the-art efforts in scene classification, the newly proposed method is more robust, more selective, and of lower complexity. These advantages are demonstrated by two sets of experiments on both our own database and standard public ones. Furthermore, occlusion and disorder problems in scene classification in video surveillance are also first studied in this paper.
Resumo:
We have demonstrated a fully covalent, signal-on E-DNA architecture based on the target-induced resolution of a DNA pseudokont. In the absence of target, the electrode-bound DNA probe adopts a pseudoknot conformation that segregates an attached methylene blue (MB) from the electrode. Upon target binding, the pseudoknot is resolved, leading to the formation of a single-stranded DNA element that supports electron transfer from the methylene blue to the electrode.
Resumo:
High resolution magic angle spinning (MAS)-H-1 nuclear magnetic resonance (NMR) spectroscopic-based metabonomic approach was applied to the investigation on the acute biochemical effects of Ce(No-3)(3). Male Wistar rats were administrated with various doses of Ce (NO3)(3)(2, 10, and 50 mg(.)kg(-1) body weight), and MAS H-1 NMR spectra of intact liver and kidney tissues were analyzed using principal component analysis to extract toxicity information. The biochemical effects of Ce (NO3)(3) were characterized by the increase of triglycerides and lactate and the decrease of glycogen in rat liver tissue, together with an elevation of the triglyceride level and a depletion of glycerophosphocholine and betaine in kidney tissues. The target lesions of Ce (NO3)(3) on liver and kidney were found by MAS NMR-based metabonomic method. This study demonstrates that the combination of MAS H-1 NMR and pattern recognition analysis can be an effective method for studies of biochemical effects of rare earths.
Resumo:
The investigations of classification on the valence changes from RE3+ to RE2+ (RE = Eu, Sm, Yb, Tm) in host compounds of alkaline earth berate were performed using artificial neural networks (ANNs). For comparison, the common methods of pattern recognition, such as SIMCA, KNN, Fisher discriminant analysis and stepwise discriminant analysis were adopted. A learning set consisting of 24 host compounds and a test set consisting of 12 host compounds were characterized by eight crystal structure parameters. These parameters were reduced from 8 to 4 by leaps and bounds algorithm. The recognition rates from 87.5 to 95.8% and prediction capabilities from 75.0 to 91.7% were obtained. The results provided by ANN method were better than that achieved by the other four methods. (C) 1999 Elsevier Science B.V. All rights reserved.