895 resultados para standing position
Resumo:
Therapy has improved the survival of heart failure (HF) patients. However, many patients progress to advanced chronic HF (ACHF). We propose a practical clinical definition and describe the characteristics of this condition. Patients that are generally recognised as ACHF often exhibit the following characteristics: 1) severe symptoms (NYHA class III to IV); 2) episodes with clinical signs of fluid retention and/or peripheral hypoperfusion; 3) objective evidence of severe cardiac dysfunction, shown by at least one of the following: left ventricular ejection fraction<30%, pseudonormal or restrictive mitral inflow pattern at Doppler-echocardiography; high left and/or right ventricular filling pressures; elevated B-type natriuretic peptides; 4) severe impairment of functional capacity demonstrated by either inability to exercise, a 6-minute walk test distance<300 m or a peak oxygen uptake<12-14 ml/kg/min; 5) history of >1 HF hospitalisation in the past 6 months; 6) presence of all the previous features despite optimal therapy. This definition identifies a group of patients with compromised quality of life, poor prognosis, and a high risk of clinical events. These patients deserve effective therapeutic options and should be potential targets for future clinical research initiatives.
Resumo:
The research presented in this thesis was conducted to further the development of the stress wave method of nondestructively assessing the quality of wood in standing trees. The specific objective of this research was to examine, in the field, use of two stress wave nondestructive assessment techniques. The first technique examined utilizes a laboratory-built measurement system consisting of commercially available accelerometers and a digital storage oscilloscope. The second technique uses a commercially available tool that incorporates several technologies to determine speed of stress wave propagation in standing trees. Field measurements using both techniques were conducted on sixty red pine trees in south-central Wisconsin and 115 ponderosa pine trees in western Idaho. After in-situ measurements were taken, thirty tested red pine trees were felled and a 15-foot-long butt log was obtained from each tree, while all tested ponderosa pine trees were felled and an 8 1/2 -foot-long butt log was obtained, respectively. The butt logs were sent to the USDA Forest Products Laboratory and nondestructively tested using a resonance stress wave technique. Strong correlative relationships were observed between stress wave values obtained from both field measurement techniques. Excellent relationships were also observed between standing tree and log speed-of-sound values.
Resumo:
Hall-effect thruster (HET) cathodes are responsible for the generation of the free electrons necessary to initiate and sustain the main plasma discharge and to neutralize the ion beam. The position of the cathode relative to the thruster strongly affects the efficiency of thrust generation. However, the mechanisms by which the position affects the efficiency are not well understood. This dissertation explores the effect of cathode position on HET efficiency. Magnetic field topology is shown to play an important role in the coupling between the cathode plasma and the main discharge plasma. The position of the cathode within the magnetic field affects the ion beam and the plasma properties of the near-field plume, which explains the changes in efficiency of the thruster. Several experiments were conducted which explored the changes of efficiency arising from changes in cathode coupling. In each experiment, the thrust, discharge current, and cathode coupling voltage were monitored while changes in the independent variables of cathode position, cathode mass flow and magnetic field topology were made. From the telemetry data, the efficiency of the HET thrust generation was calculated. Furthermore, several ion beam and plasma properties were measured including ion energy distribution, beam current density profile, near-field plasma potential, electron temperature, and electron density. The ion beam data show how the independent variables affected the quality of ion beam and therefore the efficiency of thrust generation. The measurements of near-field plasma properties partially explain how the changes in ion beam quality arise. The results of the experiments show that cathode position, mass flow, and field topology affect several aspects of the HET operation, especially beam divergence and voltage utilization efficiencies. Furthermore, the experiments show that magnetic field topology is important in the cathode coupling process. In particular, the magnetic field separatrix plays a critical role in impeding the coupling between cathode and HET. Suggested changes to HET thruster designs are provided including ways to improve the position of the separatrix to accommodate the cathode.
Resumo:
Rice (Oryza sativa L.) is an important cash crop in Honduras because of the rice lobby’s size, willingness to protest, and ability to negotiate favorable price guarantees on a year-to-year basis. Despite the availability of inexpensive irrigation in the study area in Flores, La Villa de San Antonio, Comayagua, the rice farmers do not cultivate the crop using prescribed methods such as land leveling, puddling, and water conservation structures. Soil moisture (Volumetric Water Content) was measured using a soil moisture probe after the termination of the first irrigation within the tillering/vegetative, panicle emergence/flowering, post-flowering/pre-maturation and maturation stages. Yield data was obtained by harvesting on 1 m2 plots in each soil moisture testing site. Data was analyzed to find the influence of toposequential position along transects, slope, soil moisture, and farmers on yields. The results showed that toposequential position was more important than slope and soil moisture on yields. Soil moisture was not a significant predictor of rice yields. Irrigation politics, precipitation, and land tenure were proposed as the major explanatory variables for this result.
Resumo:
There is ample evidence of a longstanding and pervasive discourse positioning students, and engineering students in particular, as “bad writers.” This is a discourse perpetuated within the academy, the workplace, and society at large. But what are the effects of this discourse? Are students aware faculty harbor the belief students can’t write? Is student writing or confidence in their writing influenced by the negative tone of the discourse? This dissertation attempts to demonstrate that a discourse disparaging student writing exists among faculty, across disciplines, but particularly within the engineering disciplines, as well as to identify the reach of that discourse through the deployment of two attitudinal surveys—one for students, across disciplines, at Michigan Technological University and one for faculty, across disciplines at universities and colleges both within the United States and internationally. This project seeks to contribute to a more accurate and productive discourse about engineering students, and more broadly, all students, as writers—one that focuses on competencies rather than incompetence, one that encourages faculty to find new ways to characterize students as writers, and encourages faculty to recognize the limits of the utility of practitioner lore.
Resumo:
Due to warmer and drier conditions, wildland fire has been increasing in extent into peatland ecosystems during recent decades. As such, there is an increasing need for broadly applicable tools to detect surface peat moisture, in order to ascertain the susceptibility of peat burning, and the vulnerability of deep peat consumption in the event of a wildfire. In this thesis, a field portable spectroradiometer was used to measure surface reflectance of two Sphagnum moss dominated peatlands. Relationships were developed correlating spectral indices to surface moisture as well as water table position. Spectral convolutions were also applied to the high resolution spectra to represent spectral sensitivity of earth observing sensors. Band ratios previously used to monitor surface moisture with these sensors were assessed. Strong relationships to surface moisture and water table position are evident for both the narrowband indices as well as broadened indices. This study also found a dependence of certain spectral relationships on changes in vegetation cover by leveraging an experimental vegetation manipulation. Results indicate broadened indices employing the 1450-1650 nm region may be less stable under changing vegetation cover than those located in the 1200 nm region.
Resumo:
Northern wetlands, and particularly peatlands, have been shown to store around 30% of the world's soil carbon and thus play a significant role in the carbon cycle of our planet. Changes in climate are altering peatland hydrology and vegetation communities. These changes are possibly resulting in declines in the ability of peatlands to sequester carbon because losses through carbon oxidation and mineralization are likely to increase relative to C inputs from net primary production in a warmer, drier climate. However, the consequences of interactive effects of altered hydrology and vegetation on carbon storage are not well understood. This research evaluated the importance of plant species, water table, and their interactive effects on porewater quality in a northern peatland with an average pH of 4.54, ranging from 4.15 to 4.8. We assessed the effects of plant functional group (ericaceous shrubs, sedges, and bryophytes) and water table position on biogeochemical processes. Specifically, we measured dissolved organic carbon (DOC), total dissolved nitrogen (TDN), potential enzyme activity, organic acids, anions and cations, spectral indexes of aromaticity, and phenolic content. Our results indicate that acetate and propionate concentrations in the sedge-dominated communities declined with depth and water table drawdown, relative to the control and ericaceous treatments. DOC increased in the lowered water table treatments in all vegetation community types, and the peat porewater C:N ratio declined in the sedge-dominated treatments when the water table was lowered. The relationship between DOC and ferrous iron showed significant responses to vegetation type; the exclusion of Ericaceae resulted in less ferrous iron per unit DOC compared to mixed species treatments and Ericaceae alone. This observation was corroborated with higher mean oxidation redox potential profiles (integrating 20, 40, and 70 cm) measured in the sedge treatments, compared with the mixed and Ericaceae species treatments over a growing season. Enzymatic activities did not show as strong of a response to treatments as expected; the oxidative enzyme peroxidase and the hydrolytic enzyme phosphatase were the only enzymes to respond to water table, where the potential activity of both enzymes increased with water table drawdown. Overall, there were significant interactive effects between changes in vegetation and water table position on peat porewater composition. These data suggest that vegetation effects on oxidation reduction potentials and peat porewater character can be as important as water table position in northern bog ecosystems.
Resumo:
OBJECTIVE: To investigate the effect of plasma concentrations obtained by a low dose constant rate infusion (CRI) of racemic ketamine or S-ketamine on the nociceptive withdrawal reflex (NWR) in standing ponies. STUDY DESIGN: Prospective, blinded, cross-over study. ANIMALS: Six healthy 5-year-old Shetland ponies. METHODS: Ponies received either 0.6 mg kg(-1) racemic ketamine (group RS) or 0.3 mg kg(-1) S-ketamine (group S) intravenously (IV), followed by a CRI of 20 microg kg(-1)minute(-1) racemic ketamine (group RS) or 10 microg kg(-1)minute(-1) S-ketamine (group S) for 59 minutes. The NWR was evoked by transcutaneous electrical stimulation of a peripheral nerve before drug administration, 15 and 45 minutes after the start of the bolus injection and 15 minutes after the end of the CRI. Electromyographic responses were recorded and analysed. Arterial blood was collected before stimulation and plasma concentrations of ketamine and norketamine were measured enantioselectively using capillary electrophoresis. Ponies were video recorded and monitored to assess drug effects on behaviour, heart rate (HR), mean arterial blood pressure (MAP) and respiratory rate. RESULTS: The NWR was significantly depressed in group RS at plasma concentrations between 20 and 25 ng mL(-1) of each enantiomer. In group S, no significant NWR depression could be observed; plasma concentrations of S-ketamine (9-15 ng mL(-1)) were lower, compared to S-ketamine concentrations in group RS, although this difference was not statistically significant. Minor changes in behaviour, HR and MAP only occurred within the first 5-10 minutes after bolus drug administration in both groups. CONCLUSION: Antinociceptive activity in standing ponies, demonstrated as a depression of the NWR, could only be detected after treatment with racemic ketamine. S-ketamine may have lacked this effect as a result of lower plasma concentrations, a more rapid metabolism or a lower potency of S-ketamine in Equidae so further investigation is necessary.
Resumo:
OBJECTIVE: We compared motor and movement thresholds to transcranial magnetic stimulation (TMS) in healthy subjects and investigated the effect of different coil positions on thresholds and MEP (motor-evoked potential) amplitudes. METHODS: The abductor pollicis brevis (APB) 'hot spot' and a standard scalp position were stimulated. APB resting motor threshold (APB MEP-MT) defined by the '5/10' electrophysiological method was compared with movement threshold (MOV-MT), defined by visualization of movements. Additionally, APB MEP-MTs were evaluated with the '3/6 method,' and MEPs were recorded at a stimulation intensity of 120% APB MEP-MT at each position. RESULTS: APB MEP-MTs were significantly lower by stimulation of the 'hot spot' than of the standard position, and significantly lower than MOV-MTs (n=15). There were no significant differences between the '3/6' and the '5/10' methods, or between APB MEP amplitudes by stimulating each position at 120% APB MEP-MT. CONCLUSIONS: Coil position and electrophysiological monitoring influenced motor threshold determinations. Performing 6 instead of 10 trials did not produce different threshold measurements. Adjustment of intensity according to APB MEP-MT at the stimulated position did not influence APB MEP amplitudes. SIGNIFICANCE: Standardization of stimulation positions, nomenclature and criteria for threshold measurements should be considered in design and comparison of TMS protocols.
Resumo:
Volcán Pacaya is one of three currently active volcanoes in Guatemala. Volcanic activity originates from the local tectonic subduction of the Cocos plate beneath the Caribbean plate along the Pacific Guatemalan coast. Pacaya is characterized by generally strombolian type activity with occasional larger vulcanian type eruptions approximately every ten years. One particularly large eruption occurred on May 27, 2010. Using GPS data collected for approximately 8 years before this eruption and data from an additional three years of collection afterwards, surface movement covering the period of the eruption can be measured and used as a tool to help understand activity at the volcano. Initial positions were obtained from raw data using the Automatic Precise Positioning Service provided by the NASA Jet Propulsion Laboratory. Forward modeling of observed 3-D displacements for three time periods (before, covering and after the May 2010 eruption) revealed that a plausible source for deformation is related to a vertical dike or planar surface trending NNW-SSE through the cone. For three distinct time periods the best fitting models describe deformation of the volcano: 0.45 right lateral movement and 0.55 m tensile opening along the dike mentioned above from October 2001 through January 2009 (pre-eruption); 0.55 m left lateral slip along the dike mentioned above for the period from January 2009 and January 2011 (covering the eruption); -0.025 m dip slip along the dike for the period from January 2011 through March 2013 (post-eruption). In all bestfit models the dike is oriented with a 75° westward dip. These data have respective RMS misfit values of 5.49 cm, 12.38 cm and 6.90 cm for each modeled period. During the time period that includes the eruption the volcano most likely experienced a combination of slip and inflation below the edifice which created a large scar at the surface down the northern flank of the volcano. All models that a dipping dike may be experiencing a combination of inflation and oblique slip below the edifice which augments the possibility of a westward collapse in the future.
Resumo:
Heart failure is a serious condition and equivalent to malignant disease in terms of symptom burden and mortality. At this moment only a comparatively small number of heart failure patients receive specialist palliative care. Heart failure patients may have generic palliative care needs, such as refractory multifaceted symptoms, communication and decision making issues and the requirement for family support. The Advanced Heart Failure Study Group of the Heart Failure Association of the European Society of Cardiology organized a workshop to address the issue of palliative care in heart failure to increase awareness of the need for palliative care. Additional objectives included improving the accessibility and quality of palliative care for heart failure patients and promoting the development of heart failure-orientated palliative care services across Europe. This document represents a synthesis of the presentations and discussion during the workshop and describes recommendations in the area of delivery of quality care to patients and families, education, treatment coordination, research and policy.