992 resultados para stability transition
Resumo:
Malignant mixed Müllerian tumours (malignant mixed mesodermal tumours, MMMT) of the uterus are metaplastic carcinomas with a sarcomatous component and thus they are also called carcinosarcomas. It has now been accepted that the sarcomatous component is derived from epithelial elements that have undergone metaplasia. The process that produces this metaplasia is epithelial to mesenchymal transition (EMT), which has recently been described as a neoplasia-associated programme shared with embryonic development and enabling neoplastic cells to move and metastasise. The ubiquitin proteasome system (UPS) regulates the turnover and functions of hundreds of cellular proteins. It plays important roles in EMT by being involved in the regulation of several pathways participating in the execution of this metastasis-associated programme. In this review the specifi c role of UPS in EMT of MMMT is discussed and therapeutic opportunities from UPS manipulations are proposed.
Resumo:
Epithelial to Mesenchymal Transition (EMT) in cancer is a process that allows cancer cells to detach from neighboring cells, become mobile and metastasize and shares many signaling pathways with development. Several molecular mechanisms which regulate oncogenic properties in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis through transcription factors or other mediators are also regulators of EMT. These pathways and downstream transcription factors are, in their turn, regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS). Ubiquitination, the covalent link of the small 76-amino acid protein ubiquitin to target proteins, serves as a signal for protein degradation by the proteasome or for other outcomes such as endocytosis, degradation by the lysosome or directing these proteins to specific cellular compartments. This review discusses aspects of the regulation of EMT by ubiquitination and the UPS and underlines its complexity focusing on transcription and transcription factors regulating EMT and are being regulated by ubiquitination.
Resumo:
Résumé : Le Large tumor suppressor, Lats2, est une protéine humaine homologue au suppresseur de tumeur Warts (Lats) de Drosophila melanogaster, qui réprime la prolifération des cellules en altérant leur cycle au niveau des transitions Gl/S et G2/M, et en induisant l'apoptose. Pourtant, la voie moléculaire par laquelle Lats2, une sériase-thréonine kinase, déclenche l'arrêt du cycle cellulaire, est toujours inconnue. Notre équipe a d'abord déterminé que Lats2 était un gène de réponse à la protéine p53 (Kostic et al., 2000). Par la suite, nous avons identifié des protéines interagissant avec Lats2, notamment les modules de reconnaissance du substrat des ligases Colline E3 (des protéines contenant Socs box ou F box) ainsi que deux Bous-unités du Signalosome CSN: CSN4 et CSNS. En outre, Lats2 est connue pour s'associer au Super-complexe composé de CSN et des ligases Colline E3 (Rongere, thesis, 2004; Rongere, unpublished results, 2005). Le travail présenté ici sur Lats2 a confirmé que cette protéine est une kinase associée à CSN. Nous avons caractérisé les interactions spécifiques de domaines de Lats2 avec hSocs3, hWsb 1 (des protéines Socs box) et hFBX-7 (une protéine F box), ainsi que les conséquences physiologiques des interactions avec hSocs3, hWsb1 et hSocs1. Des expériences de GST pull-down ont montré que les deux domaines, N-terminal et kinase, de Lats2 interagissent avec hSocs3, hWsb1 et hFBX-7, ce qui suggère aussi que l'ensemble de la protéine Lats2 est impliqué dans ces interactions. Une étude approfondie des interactions entre Lats2 et hSocs3 indique que le domaine kinase de Lats2 interagit avec la région de hSocs3 contenant un domaine SH2, situé en amont du domaine Socs box de hSocs3. Par ailleurs, Lats2 phosphoryle des régions spécifiques entre les domaines N-terminal et SH2 (Sl), et, entre les domaines SH2 et Socs box (S3) de la protéine hSocs3. Ces résultats révèlent que hSocs3 est un.nouveau substrat de Lats2. Des modifications de l'activité kinase ont aussi révélé que la protéine sauvage Lats2 (wt Lats2) était capable de phosphoryler hSocs3, alors qu'un mutant dead du domaine kinase Lats (poche ATP délétée, Lats2OATP) non. L'analyse des mutations a permis d'identifier deux résidus sériase situés aux positions 1441145 (S3), spécifiquement phosphorylés par wt Lats2. La phosphorylation des protéines représentant un signal de dégradation protéolytique, nous avons envisagé que Lats2 pouvait cibler hSocs3 pour une dégradation protéasomale. Lorsque wt Lats2 est surexprimée dans des cellules HEK293T et COS7, la demi-vie de hSocs3, un élément de la ligase Elongine BC-Colline É3 (ligase EBC), diminue significativement, effet que n'a pas la surexpression de Lats2OATP. De plus, la stabilité de hSocs3 dépend de la phosphorylation des résidus sériase aux positions 144/145 par wt Lats2. Bien que les sites de phosphorylation ne soient pas définis pour les deux autres modules de reconnaissance du substrat de la ligase EBC: hWsb 1 et hSocsl, leurs demi-vies diminuent également quand wt Lats2 est surexprimée. Pour les tests in vivo, nous avons synthétisé des esiRNA pour diminuer l'expression du gène endogène lats2, ce qui a entraîné une augmentation d'un facteur 2 de la demi-vie de hSocs3 et de hWsbl dans les cellules HEK293T. En conclusion, nos résultats suggérent que Lats2, une kinase associée au CSN, est un nouveau régulateur de la fonction des ligases EBC, agissant sur le renouvellement des protéines hSocs3, hSocs1 et hWsb1. Ainsi, Lats2 altère la spécificité et la capacité des ligases EBC, régulant par là même la stabilité de nombreuses protéines, ciblées par les ligases EBC pour une dégradation protéasomale. D'autres études devraient révéler si la modification observée de la fonction de la ligase EBC par Lats2, associée au Super-complexe, est également responsable du renouvellement des régulateurs du cycle cellulaire et des changements dans ce même cycle observés lors de la surexpression de Lats2. Summary : The Large tumor suppressor 2 (Lats2) is a human homologue of the Drosophila melanogaster tumor suppressor Warts (Cats) who negatively regulates cell proliferation by altering cell cycle Gl/S and G2/M transition and inducing apoptosis. However, the molecular pathway by which Lats2, a serine-threonine kinase, mediates cell cycle arrest is still unknown. Lats2 was initially identified to be a p53 response gene by our group (Kostic et al., 2000). Subsequently, our group identified interacting candidates of Lats2, including substrate recognition modules of Cullin-based E3 ligases (Socs box or F-box containing proteins) as well as two subunits of the Signalosome (CSN), CSN4 and CSNS. Additionally, Lats2 was shown to associate with a Super-complex, composed of CSN and Cullin-based E3 ligases (Rongere, thesis, 2004; Rongere, unpublished results, 2005) We hypothesized that Lats2 may perform its physiological function through interaction with CSN and Cullin-based E3 ligases. The present work on Lats2 has confirmed that Lats2 is a CSN associated kinase. We defined the domain specific interactions of Lats2 with hSocs3, hWsb1 (Sots box proteins) and hFBX-7 (F box protein), as well as the physiological consequences of interaction with hSocs3, hWsb1 and hSocs1. Both the N-terminal and the kinase domains of Lats2 interact with full-length hSocs3, hWsb1 and hFBX-7, determined in GST pull-down assays suggesting that full-length Lats2 protein is involved in interactions. Refinement of the Lats2 interaction with hSocs3 indicated that the kinase domain of Lats2 interacts with a region of hSocs3 containing a SH2 domain located upstream of the Socs box domain of the hSocs3. Moreover, Lats2 phosphorylated specific regions between the N-terminal and SH2 domain (S l) as well as between the SH2 domain and Socs box domain of hSocs3 (S3).These results indicate that hSocs3 is a novel Lats2 substrate. The kinase assay has also demonstrated that wt Lats2 was able to phosphorylate hSocs3, but not Lats2 kinase dead mutant (deleted ATP pocket, Lats20ATP). Mutational analysis identified two serine residues located at positions 144/145 (S3) to be specifically phosphorylated by wt Lats2. Phosphorylation of proteins has been shown to be a signal for proteolytic degradation of many characterized proteins. Thus we hypothesized that Lats2 could target hSocs3 for proteasomal degradation. When wt Lats2 was over-expressed in HEK293T cells and COST cells, the half-life of hSocs3, as a component of Elongin BC Cullin-based E3 ubiquitin ligase (EBC ligase), decreased significantly. In contrast, aver-expression of the Lats2OATP did not alter the half-life of hSocs3. Furthermore, the stability of hSocs3 depended on phosphorylation of serine residues at positions 144/145 by wt Lats2. Although the sites of phosphorylation were not defined for two other substrate recognition modules of EBC ligasehWsbl and hSocsl, their half-lives also decreased when wt Lats2 was over-expressed. To test in vivo, we synthesized esiRNA to knock-down endogenous Lats2 and subsequently we measured the half-lives of hSocs3 and hVVsb l . Here we demonstrated that the half-lives of hSocs3 and hWsbl were increased by the factor of two in Lats2-depleted HEK293T cells. In conclusion, our findings suggest that Lats2, a CSN associated kinase, is a novel regulator of EBC ligase function by regulating the turn-over of hSocs3, hSocs1 and hWsb1. Thus, Lats2 alters the specificity and capacity of EBC ligases regulating thereby the stability of numerous proteins which are targeted by EBC ligases for proteasomal degradation. Further studies should reveal whether the observed modulation of EBC ligase function by Lats2 associated with a Super-complex is also responsible for the turn-over of cell cycle regulators and the observed alteration in cell cycle by Lats2 over-expression.
Resumo:
The Neolithic was marked by a transition from small and relatively egalitarian groups to much larger groups with increased stratification. But, the dynamics of this remain poorly understood. It is hard to see how despotism can arise without coercion, yet coercion could not easily have occurred in an egalitarian setting. Using a quantitative model of evolution in a patch-structured population, we demonstrate that the interaction between demographic and ecological factors can overcome this conundrum. We model the coevolution of individual preferences for hierarchy alongside the degree of despotism of leaders, and the dispersal preferences of followers. We show that voluntary leadership without coercion can evolve in small groups, when leaders help to solve coordination problems related to resource production. An example is coordinating construction of an irrigation system. Our model predicts that the transition to larger despotic groups will then occur when: (i) surplus resources lead to demographic expansion of groups, removing the viability of an acephalous niche in the same area and so locking individuals into hierarchy; (ii) high dispersal costs limit followers' ability to escape a despot. Empirical evidence suggests that these conditions were probably met, for the first time, during the subsistence intensification of the Neolithic.
Resumo:
14C dating models are limited when considering recent groundwater for which the carbon isotopic signature of the total dissolved inorganic carbon (TDIC) is mainly acquired in the unsaturated zone. Reducing the uncertainties of dating thus implies a better identification of the processes controlling the carbon isotopic composition of the TDIC during groundwater recharge. Geochemical interactions between gas, water and carbonates in the unsaturated zone were investigated for two aquifers (the carbonate-free Fontainebleau sands and carbonate-bearing Astian sands, France) in order to identify the respective roles of CO2 and carbonates on the carbon isotopic signatures of the TDIC; this analysis is usually approached using open or closed system terms. Under fully open system conditions, the seasonality of the 13C values in the soil CO2 can lead to important uncertainties regarding the so-called "initial 14C activity" used in 14C correction models. In a carbonate-bearing unsaturated zone such as in the Astian aquifer, we show that an approach based on fully open or closed system conditions is not appropriate. Although the chemical saturation between water and calcite occurs rapidly within the first metre of the unsaturated zone, the carbon isotopic contents (δ13C) of the CO2 and the TDIC evolve downward, impacted by the dissolution-precipitation of the carbonates. In this study, we propose a numerical approach to describe this evolution. The δ13C and the A 14C (radiocarbon activity) of the TDIC at the base of the carbonate-hearing unsaturated zone depends on (i) the δ13C and the A 14C of the TDIC in the soil determined by the soil CO2, (ii) the water's residence time in the unsaturated zone and (iii) the carbonate precipitation-dissolution fluxes. In this type of situation, the carbonate δ13C-A 14C evolutions indicate the presence of secondary calcite and permit the calculation of its accretion flux, equal to ~ 4.5 ± 0.5 x 10-9 mol grock-1 yr-1. More generally, for other sites under temperate climate and with similar properties to the Astian sands site, this approach allows for a reliable determination of the carbon isotopic composition at the base of the unsaturated zone as the indispensable "input function" data of the carbon cycle into the aquifer.
Resumo:
We described the colonization dynamics of Staphylococcus aureus in a group of 266 healthy carriers over a period of approximately 1 year. We used precise genotyping methods, i.e., amplified fragment length polymorphism (AFLP), spa typing, and double-locus sequence typing (DLST), to detect changes in strain identity. Strain change took place rather rarely: out of 89 carriers who had initially been colonized, only 7 acquired a strain different from the original one. Approximately one-third of the carriers eliminated the colonization, and a similar number became newly colonized. Some of these events probably represent detection failure rather than genuine colonization loss or acquisition. Lower bacterial counts were associated with increased probability of eliminating the colonization. We have confirmed a high mutation rate in the spa locus: 6 out of 53 strains underwent mutation in the spa locus. There was no overall change in S. aureus genotype composition.
Resumo:
The second differential of the entropy is used for analysing the stability of a thermodynamic climatic model. A delay time for the heat flux is introduced whereby it becomes an independent variable. Two different expressions for the second differential of the entropy are used: one follows classical irreversible thermodynamics theory; the second is related to the introduction of response time and is due to the extended irreversible thermodynamics theory. the second differential of the classical entropy leads to unstable solutions for high values of delay times. the extended expression always implies stable states for an ice-free earth. When the ice-albedo feedback is included, a discontinuous distribution of stable states is found for high response times. Following the thermodynamic analysis of the model, the maximum rates of entropy production at the steady state are obtained. A latitudinally isothermal earth produces the extremum in global entropy production. the material contribution to entropy production (by which we mean the production of entropy by material transport of heat) is a maximum when the latitudinal distribution of temperatures becomes less homogeneous than present values
Resumo:
The net mechanical efficiency of positive work (eta(pos)) has been shown to increase if it is immediately preceded by negative work. This phenomenon is explained by the storage of elastic energy during the negative phase and its release during the subsequent positive phase. If a transition time (T) takes place, the elastic energy is dissipated into heat. The aim of the present study was to investigate the relationship between eta(pos) and T, and to determine the minimal T required so that eta(pos) reached its minimal value. Seven healthy male subjects were tested during four series of lowering-raising of the body mass. In the first series (S (0)), the negative and positive phases were executed without any transition time. In the three other series, T was varied by a timer (0.12, 0.24 and 0.56 s for series S (1), S (2) and S (3), respectively). These exercises were performed on a force platform sensitive to vertical forces to measure the mechanical work and a gas analyser was used to determine the energy expenditure. The results indicated that eta(pos) was the highest (31.1%) for the series without any transition time (S (0)). The efficiencies observed with transition times (S (1), S (2) and S (3)) were 27.7, 26.0 and 23.8%, respectively, demonstrating that T plays an important role for mechanical efficiency. The investigation of the relationship between eta(pos) and T revealed that the minimal T required so that eta(pos) reached its minimal value is 0.59 s.
Resumo:
OBJECTIVES: To evaluate whether adult specialists comply with the basic principles for a successful transition of adolescents with chronic disorders, and to determine whether the characteristics of the adult specialists have an influence on applying these principles. METHODS: Out of 299 adult specialists in four French-speaking Swiss cantons, 209 (70%) answered a paper-and-pencil mailed questionnaire between May and July 2007. Only those having received the transfer of at least one adolescent in the previous 2 years (N=102) were included in the analysis. We analyzed four dependent variables: discussing common concerns of adolescent patients, seeing the patient alone, having a transition protocol, and having a previous contact with the pediatric specialist. A logistic regression was performed for each dependent variable controlling for the physicians' characteristics (number of transfers, age, gender, workplace, and perceived experience). RESULTS: Fifty-four percent of the physicians did not spend time alone with their patients, and sensitive issues such as sexuality or substance use were not widely discussed with their young patients. Most respondents (59%) did not have an established protocol, and 54% did not have any contact with the pediatric specialist. In the multivariate analyses, the adult specialists' characteristics had little impact. CONCLUSIONS: For many adolescents with chronic disorders the transition from pediatric to adult healthcare seems to be limited to a simple transfer, often lacking adequate communication between physicians. Applying simple but basic principles such as a good coordination between providers would probably improve the quality of healthcare of adolescents with chronic illness.
Resumo:
Seven Years ofInnovation, Technological Advances, Enhanced Service & Fluid Commerce in the Iowa Alcoholic Beverages Division.