987 resultados para spectrophotometry
Resumo:
Based on the data of synchronous observations of hydrophysical and biogeochemical parameters in the near-mouth and shallow-water areas of the northern Caspian in 2000-2001, the scale of spatiotemporal variability in the following characteristics of the water-bottom system was estimated (1) flow velocity and direction within vortex structures formed by the combined effect of wind, discharge current, and the presence of higher aquatic plants; (2) dependence of the spatial distribution of the content and composition of suspended particulate matter on the hydrodynamic regime of waters and development of phytoplankton; (3) variations in the grain-size, petrographic, mineralogical, and chemical compositions of the upper layer of bottom sediments at several sites in the northern Caspian related to the particular local combination of dominant natural processes; and (4) limits of variability in the group composition of humus compounds in bottom sediments. The acquired data are helpful in estimating the geochemical consequences of a sea level rise and during the planning of preventive environmental protection measures in view of future oil and gas recovery in this region.
Resumo:
Data on contents and compositions of hydrocarbons (HCs)-aliphatic (AHCs) and polycyclic aromatic (PAHs) are provided in comparison with contents of total organic carbon (Corg), lipids in suspended matter, and Corg in bottom sediments. Particular attention is paid to distribution of HCs in the area of the Kravtsov oil field. It is established that concentrations of AHCs in water are governed by concentrations of suspended matter and elevated AHC concentrations are confined to coastal areas. In the area of D-6 platform sandy bottom sediments are notable for great variability of HC concentrations, both laterally and from year to year. In summer of 2010 average content of AHCs was 40 ppm (19% of Corg) and that of PAHs was 0.023 ppm. Natural seepage from sediment mass is considered to be a source of HCs along with oil contamination.
Resumo:
Results are examined of determinations of chlorophyll in seawater suspension by fluorescent and spectrophometric methods in the Southwest Indian Ocean near the African coast and in the Seychelles-Mauritius Plateau area in July-November 1977. During the study period near the African coast, the most productive regions, where the weighted average particulate chlorophyll concentration in the photic zone was greater than 0.5 µg/l, were off the Mozambique coast (near the mouth of the Zambezi River and in Delagoa Bay) and also off the coast of Tanzania, near the the Pemba and Zanzibar Islands. The most favorable conditions for growth of phytoplankton, i.e., a combination of distinct water stratification with intense upwelling, were observed in the equatorial divergence zone in the region of the Seychelles and Amirante Islands, where chlorophyll concentration in the layer of the maximum was as high as 3.4 µg/l. This region can be considered as one of the most productive regions of the Indian Ocean.
Resumo:
Primary production in water column (P_p) varied from 107 to 312 mg C/m**2/day in Yenisey Bay: from 25 to 63 mg C/m**2/day in Obskaya Guba: and from 20 to 359 mg C/m**2/day in the open sea, that is: in the western Kara Sea and Ob-Yenisey shoals. The average concentration of chlorophyll a in the photosynthesis layer (C_ph) ranged from 0.2 to 1.8 mg/m**3 in these two regions, lower than in the estuaries of Ob (1.6-21.7 mg/m**3) and Yenisey (2.0-5.2 mg/m**3) Rivers. An inverse relation between surface salinity (S) and chlorophyll concentration (C_s) and chlorophyll concentration in the photosynthesis layer was found for all of the regions. The highest values of C_s and C_ph (0.8-22 mg/m**3) were measured at S<10 ppt, and the lowest values (0.2-0.8 mg/m**3) at S>22 ppt. A similar correlation of S with values of Pp occurred only in the Yenisey Bay and offshore regions. Obtained results agree well with the "outwelling" hypothesis. It states that large part of organic matter produced in estuaries is not used in estuarine trophic chains but is transported into adjacent sea areas and increases their productivity. Low values of Pp in the study regions may be attributed to such unfavorable factors as deficiency in nutrients, low temperature and turbidity, and lack of solar radiation.
Resumo:
From July 4 to 18,1995 surface chlorophyll a concentrations (C_cs) and integral primary production (C_ps) were studied in the northeastern part of the Norwegian Sea (73°42'N; 13°16'E), over a test area where an accident of the nuclear submarine Komsomolets had taken place. It was found that during this interval C_cs decreased by factor of about 3.3 (from 0.78 to 0.24 mg/m**3); average chlorophyll concentration within the photo-synthetic layer (C_cl) decreased by factor of about 3.5 (from 0.97 to 0.28 mg/m**3). The value of C_ps in the water column varied slightly (from 445 to 539 mg C/m**2 per day), since decrease in C_cl was compensated both by 1.5-fold growth of the photosynthetic layer thickness (from 40 to 60 m) and by 2.1-fold increase in its average assimilation number (from 0.58 to 1.20 mg C/mg chl a per hour). Monthly averages of C_ps were obtained from published data on seasonal C_cs changes and on the level of incident solar irradiation. They were found to be less than 100 mg C/m**2 per day in March and October and 100-500 mg C/m**2 per day in April-June. Annual primary production calculated from above values was equal to 105 g C/m**2.
Resumo:
Background and Aims: Anthropogenic depletion of stratospheric ozone in Arctic latitudes has resulted in an increase of ultraviolet-B radiation (UV-B) reaching the biosphere. UV-B exposure is known to reduce aboveground biomass and plant height, to increase DNA damage and cause accumulation of UV-absorbing compounds in polar plants. However, many studies on Arctic mosses tended to be inconclusive. The importance of different water availability in influencing UV-B impacts on lower plants in the Arctic has been poorly explored and might partially explain the observed wide variation of responses, given the importance of water in controlling bryophyte physiology. This study aimed to assess the long-term responses of three common sub-Arctic bryophytes to enhanced UV-B radiation (+UV-B) and to elucidate the influence of water supply on those responses. Results: Responses were species specific: H. splendens responded most to +UV-B, with reduction in both annual growth (-22%) and sporophyte production (-44%), together with increased b-carotene, violaxanthin, total chlorophyll and NPQ, and decreased zeaxanthin and de-epoxidation of the xanthophyll cycle pool (DES). Barbilophozia lycopodioides responded less to +UV-B, showing increased b-carotene and sclerophylly and decreased UV-absorbing compounds. Polytrichum commune only showed small morphogenetic changes. No effect of UV-B on bryophyte cover was observed. Water availability had profound effects on bryophyte ecophysiology, and plants showed, in general, lower growth and ETR, together with a higher photoprotection in the drier site. Water availability also influenced bryophyte responses to +UV-B and, in particular, responses were less detectable in the drier site. Conclusions: Impacts of UV-B exposure on Arctic bryophytes were significant, in contrast to modest or absent UV-B effects measured in previous studies. The impacts were more easily detectable in species with high plasticity such as H. splendens and less obvious, or more subtle, under drier conditions. Species biology and water supply greatly influences the impact of UV-B on at least some Arctic bryophytes and could contribute to the wide variation of responses observed previously.