860 resultados para spatio-temporal reasoning
Resumo:
The Last Interglacial (LIG, 129-116 thousand of years BP, ka) represents a test bed for climate model feedbacks in warmer-than-present high latitude regions. However, mainly because aligning different palaeoclimatic archives and from different parts of the world is not trivial, a spatio-temporal picture of LIG temperature changes is difficult to obtain. Here, we have selected 47 polar ice core and sub-polar marine sediment records and developed a strategy to align them onto the recent AICC2012 ice core chronology. We provide the first compilation of high-latitude temperature changes across the LIG associated with a coherent temporal framework built between ice core and marine sediment records. Our new data synthesis highlights non-synchronous maximum temperature changes between the two hemispheres with the Southern Ocean and Antarctica records showing an early warming compared to North Atlantic records. We also observe warmer than present-day conditions that occur for a longer time period in southern high latitudes than in northern high latitudes. Finally, the amplitude of temperature changes at high northern latitudes is larger compared to high southern latitude temperature changes recorded at the onset and the demise of the LIG. We have also compiled four data-based time slices with temperature anomalies (compared to present-day conditions) at 115 ka, 120 ka, 125 ka and 130 ka and quantitatively estimated temperature uncertainties that include relative dating errors. This provides an improved benchmark for performing more robust model-data comparison. The surface temperature simulated by two General Circulation Models (CCSM3 and HadCM3) for 130 ka and 125 ka is compared to the corresponding time slice data synthesis. This comparison shows that the models predict warmer than present conditions earlier than documented in the North Atlantic, while neither model is able to produce the reconstructed early Southern Ocean and Antarctic warming. Our results highlight the importance of producing a sequence of time slices rather than one single time slice averaging the LIG climate conditions.
Resumo:
The main inputs to the hippocampus arise from the entorhinal cortex (EC) and form a loop involving the dentate gyrus, CA3 and CA1 hippocampal subfields and then back to EC. Since the discovery that the hippocampus is involved in memory formation in the 50's, this region and its circuitry have been extensively studied. Beyond memory, the hippocampus has also been found to play an important role in spatial navigation. In rats and mice, place cells show a close relation between firing rate and the animal position in a restricted area of the environment, the so-called place field. The firing of place cells peaks at the center of the place field and decreases when the animal moves away from it, suggesting the existence of a rate code for space. Nevertheless, many have described the emergence of hippocampal network oscillations of multiple frequencies depending on behavioral state, which are believed to be important for temporal coding. In particular, theta oscillations (5-12 Hz) exhibit a spatio-temporal relation with place cells known as phase precession, in which place cells consistently change the theta phase of spiking as the animal traverses the place field. Moreover, current theories state that CA1, the main output stream of the hippocampus, would interplay inputs from EC and CA3 through network oscillations of different frequencies, namely high gamma (60-100 Hz; HG) and low gamma (30-50 Hz; LG), respectively, which tend to be nested in different phases of the theta cycle. In the present dissertation we use a freely available online dataset to make extensive computational analyses aimed at reproducing classical and recent results about the activity of place cells in the hippocampus of freely moving rats. In particular, we revisit the debate of whether phase precession is due to changes in firing frequency or space alone, and conclude that the phenomenon cannot be explained by either factor independently but by their joint influence. We also perform novel analyses investigating further characteristics of place cells in relation to network oscillations. We show that the strength of theta modulation of spikes only marginally affects the spatial information content of place cells, while the mean spiking theta phase has no influence on spatial information. Further analyses reveal that place cells are also modulated by theta when they fire outside the place field. Moreover, we find that the firing of place cells within the theta cycle is modulated by HG and LG amplitude in both CA1 and EC, matching cross-frequency coupling results found at the local field potential level. Additionally, the phase-amplitude coupling in CA1 associated with spikes inside the place field is characterized by amplitude modulation in the 40-80 Hz range. We conclude that place cell firing is embedded in large network states reflected in local field potential oscillations and suggest that their activity might be seen as a dynamic state rather than a fixed property of the cell.
Resumo:
This study presents newly obtained coral ages of the cold-water corals Lophelia pertusa and Madrepora oculata collected in the Alboran Sea and the Strait of Sicily (Urania Bank). These data were combined with all available Mediterranean Lophelia and Madrepora ages compiled from literature to conduct a basin-wide assessment of the spatial and temporal occurrence of these prominent framework-forming scleractinian species in the Mediterranean realm and to unravel the palaeo-environmental conditions that controlled their proliferation or decline. For the first time special focus was placed on a closer examination of potential differences occurring between the eastern and western Mediterranean sub-basins. Our results clearly demonstrate that cold-water corals occurred sparsely in the entire Mediterranean during the last glacial before becoming abundant during the Bølling-Allerød warm interval, pointing to a basin-wide, almost concurrent onset in (re-)colonisation after ~13.5 ka. This time coincides with a peak in meltwater discharge originating from the northern Mediterranean borderlands which caused a major reorganisation of the Mediterranean thermohaline circulation. During the Younger Dryas and Holocene, some striking differences in coral proliferation were identified between the sub-basins such as periods of highly prolific coral growth in the eastern Mediterranean Sea during the Younger Dryas and in the western basin during the Early Holocene, whereas a temporary pronounced coral decline during the Younger Dryas was exclusively affecting coral sites in the Alboran Sea. Comparison with environmental and oceanographic data revealed that the proliferation of the Mediterranean corals is linked with enhanced productivity conditions. Moreover, corals thrived in intermediate depths and showed a close relationship with intermediate water mass circulation in the Mediterranean sub-basins. For instance, reduced Levantine Intermediate Water formation hampered coral growth in the eastern Mediterranean Sea during sapropel S1 event as reduced Winter Intermediate Water formation did in the westernmost part of the Mediterranean (Alboran Sea) during the Mid-Holocene. Overall, this study clearly demonstrates the importance to consider region-specific environmental changes as well as species-specific environmental preferences in interpreting coral chronologies. Moreover, it highlights that the occurrence or decline of cold-water corals is not controlled by one key parameter but rather by a complex interplay of various environmental variables.
Resumo:
Network simulation is an indispensable tool for studying Internet-scale networks due to the heterogeneous structure, immense size and changing properties. It is crucial for network simulators to generate representative traffic, which is necessary for effectively evaluating next-generation network protocols and applications. With network simulation, we can make a distinction between foreground traffic, which is generated by the target applications the researchers intend to study and therefore must be simulated with high fidelity, and background traffic, which represents the network traffic that is generated by other applications and does not require significant accuracy. The background traffic has a significant impact on the foreground traffic, since it competes with the foreground traffic for network resources and therefore can drastically affect the behavior of the applications that produce the foreground traffic. This dissertation aims to provide a solution to meaningfully generate background traffic in three aspects. First is realism. Realistic traffic characterization plays an important role in determining the correct outcome of the simulation studies. This work starts from enhancing an existing fluid background traffic model by removing its two unrealistic assumptions. The improved model can correctly reflect the network conditions in the reverse direction of the data traffic and can reproduce the traffic burstiness observed from measurements. Second is scalability. The trade-off between accuracy and scalability is a constant theme in background traffic modeling. This work presents a fast rate-based TCP (RTCP) traffic model, which originally used analytical models to represent TCP congestion control behavior. This model outperforms other existing traffic models in that it can correctly capture the overall TCP behavior and achieve a speedup of more than two orders of magnitude over the corresponding packet-oriented simulation. Third is network-wide traffic generation. Regardless of how detailed or scalable the models are, they mainly focus on how to generate traffic on one single link, which cannot be extended easily to studies of more complicated network scenarios. This work presents a cluster-based spatio-temporal background traffic generation model that considers spatial and temporal traffic characteristics as well as their correlations. The resulting model can be used effectively for the evaluation work in network studies.
Resumo:
We present four melt climatology estimates based on a simulation of Antarctic iceberg drift and melting that includes small, medium-sized, and giant tabular icebergs with a realistic size distribution. Drift and meltdown is simulated using vertical profiles of ocean currents, temperature, and salinity, which goes beyond the present standard in iceberg modeling. The climatology estimates based on simulations of small (SMA), 'small-to-medium'-sized (MED12 & MED123), and small-to-giant icebergs (ALL) exhibit differential characteristics: successive inclusion of larger icebergs leads to a reduced seasonality of iceberg melt and a shift of the mass input to the area north of 58°S, while less melt water is released into the coastal areas. This highlights the necessity to account for larger and giant icebergs in order to obtain accurate melt climatologies. The four monthly melt climatologies [mm/day] are available as netCDF files with 1°x1° spatial resolution and can be used, e.g., for sensitivity studies with uncoupled sea ice-ocean models, or as spatio-temporal templates for the redistribution of land ice from the Antarctic ice sheet over the Southern Ocean in climate models.
Resumo:
Drought is a key factor affecting forest ecosystem processes at different spatio-temporal scales. For accurately modeling tree functioning ? and thus for producing reliable simulations of forest dynamics ? the consideration of the variability in the timing and extent of drought effects on tree growth is essential, particularly in strongly seasonal climates such as in the Mediterranean area. Yet, most dynamic vegetation models (DVMs) do not include this intra-annual variability of drought effects on tree growth. We present a novel approach for linking tree-ring data to drought simulations in DVMs. A modified forward model of tree-ring width (VS-Lite) was used to estimate seasonal- and site-specific growth responses to drought of Scots pine (Pinus sylvestris L.), which were subsequently implemented in the DVM ForClim. Ring-width data from sixteen sites along a moisture gradient from Central Spain to the Swiss Alps, including the dry inner Alpine valleys, were used to calibrate the forward ring-width model, and inventory data from managed Scots pine stands were used to evaluate ForClim performance. The modified VS-Lite accurately estimated the year-to-year variability in ring-width indices and produced realistic intra-annual growth responses to soil drought, showing a stronger relationship between growth and drought in spring than in the other seasons and thus capturing the strategy of Scots pine to cope with drought. The ForClim version including seasonal variability in growth responses to drought showed improved predictions of stand basal area and stem number, indicating the need to consider intra-annual differences in climate-growth relationships in DVMs when simulating forest dynamics. Forward modeling of ring-width growth may be a powerful tool to calibrate growth functions in DVMs that aim to simulate forest properties in across multiple environments at large spatial scales.
Resumo:
During the last deglaciation, the opposing patterns of atmospheric CO2 and radiocarbon activities (D14C) suggest the release of 14C-depleted CO2 from old carbon reservoirs. Although evidences point to the deep Pacific as a major reservoir of this 14C-depleted carbon, its extent and evolution still need to be constrained. Here we use sediment cores retrieved along a South Pacific transect to reconstruct the spatio-temporal evolution of D14C over the last 30,000 years. In ~2,500-3,600 m water depth, we find 14C-depleted deep waters with a maximum glacial offset to atmospheric 14C (DD14C = -1,000 per mil). Using a box model, we test the hypothesis that these low values might have been caused by an interaction of aging and hydrothermal CO2 influx. We observe a rejuvenation of circumpolar deep waters synchronous and potentially contributing to the initial deglacial rise in atmospheric CO2. These findings constrain parts of the glacial carbon pool to the deep South Pacific.
Resumo:
Sea ice leads play an essential role in ocean-ice-atmosphere exchange, in ocean circulation, geochemistry, and in ice dynamics. Their precise detection is crucial for altimetric estimations of sea ice thickness and volume. This study evaluates the performance of the SARAL/AltiKa (Satellite with ARgos and ALtiKa) altimeter to detect leads and to monitor their spatio-temporal dynamics. We show that a pulse peakiness parameter (PP) used to detect leads by Envisat RA-2 and ERS-1,-2 altimeters is not suitable because of saturation of AltiKa return echoes over the leads. The signal saturation results in loss of 6-10% of PP data over sea ice. We propose a different parameter-maximal power of waveform-and define the threshold to discriminate the leads. Our algorithm can be applied from December until May. It detects well the leads of small and medium size from 200 m to 3-4 km. So the combination of the high-resolution altimetric estimates with low-resolution thermal infra-red or radiometric lead fraction products could enhance the capability of remote sensing to monitor sea ice fracturing.
Resumo:
A major weakness among loading models for pedestrians walking on flexible structures proposed in recent years is the various uncorroborated assumptions made in their development. This applies to spatio-temporal characteristics of pedestrian loading and the nature of multi-object interactions. To alleviate this problem, a framework for the determination of localised pedestrian forces on full-scale structures is presented using a wireless attitude and heading reference systems (AHRS). An AHRS comprises a triad of tri-axial accelerometers, gyroscopes and magnetometers managed by a dedicated data processing unit, allowing motion in three-dimensional space to be reconstructed. A pedestrian loading model based on a single point inertial measurement from an AHRS is derived and shown to perform well against benchmark data collected on an instrumented treadmill. Unlike other models, the current model does not take any predefined form nor does it require any extrapolations as to the timing and amplitude of pedestrian loading. In order to assess correctly the influence of the moving pedestrian on behaviour of a structure, an algorithm for tracking the point of application of pedestrian force is developed based on data from a single AHRS attached to a foot. A set of controlled walking tests with a single pedestrian is conducted on a real footbridge for validation purposes. A remarkably good match between the measured and simulated bridge response is found, indeed confirming applicability of the proposed framework.
Resumo:
Energy policies around the world are mandating for a progressive increase in renewable energy production. Extensive grassland areas with low productivity and land use limitations have become target areas for sustainable energy production to avoid competition with food production on the limited available arable land resources and minimize further conversion of grassland into intensively managed energy cropping systems or abandonment. However, the high spatio-temporal variability in botanical composition and biochemical parameters is detrimental to reliable assessment of biomass yield and quality regarding anaerobic digestion. In an approach to assess the performance for predicting biomass using a multi-sensor combination including NIRS, ultra-sonic distance measurements and LAI-2000, biweekly sensor measurements were taken on a pure stand of reed canary grass (Phalaris aruninacea), a legume grass mixture and a diversity mixture with thirty-six species in an experimental extensive two cut management system. Different combinations of the sensor response values were used in multiple regression analysis to improve biomass predictions compared to exclusive sensors. Wavelength bands for sensor specific NDVI-type vegetation indices were selected from the hyperspectral data and evaluated for the biomass prediction as exclusive indices and in combination with LAI and ultra-sonic distance measurements. Ultrasonic sward height was the best to predict biomass in single sensor approaches (R² 0.73 – 0.76). The addition of LAI-2000 improved the prediction performance by up to 30% while NIRS barely improved the prediction performance. In an approach to evaluate broad based prediction of biochemical parameters relevant for anaerobic digestion using hyperspectral NIRS, spectroscopic measurements were taken on biomass from the Jena-Experiment plots in 2008 and 2009. Measurements were conducted on different conditions of the biomass including standing sward, hay and silage and different spectroscopic devices to simulate different preparation and measurement conditions along the process chain for biogas production. Best prediction results were acquired for all constituents at laboratory measurement conditions with dried and ground samples on a bench-top NIRS system (RPD > 3) with a coefficient of determination R2 < 0.9. The same biomass was further used in batch fermentation to analyse the impact of species richness and functional group composition on methane yields using whole crop digestion and pressfluid derived by the Integrated generation of solid Fuel and Biogas from Biomass (IFBB) procedure. Although species richness and functional group composition were largely insignificant, the presence of grasses and legumes in the mixtures were most determining factors influencing methane yields in whole crop digestion. High lignocellulose content and a high C/N ratio in grasses may have reduced the digestibility in the first cut material, excess nitrogen may have inhibited methane production in second cut legumes, while batch experiments proved superior specific methane yields of IFBB press fluids and showed that detrimental effects of the parent material were reduced by the technical treatment
Resumo:
L’objectif principal de cette thèse était d’obtenir, via l’électrophysiologie cognitive, des indices de fonctionnement post-traumatisme craniocérébral léger (TCCL) pour différents niveaux de traitement de l’information, soit l’attention sélective, les processus décisionnels visuoattentionnels et les processus associés à l’exécution d’une réponse volontaire. L’hypothèse centrale était que les mécanismes de production des lésions de même que la pathophysiologie caractérisant le TCCL engendrent des dysfonctions visuoattentionnelles, du moins pendant la période aiguë suivant le TCCL (i.e. entre 1 et 3 mois post-accident), telles que mesurées à l’aide d’un nouveau paradigme électrophysiologique conçu à cet effet. Cette thèse présente deux articles qui décrivent le travail effectué afin de rencontrer ces objectifs et ainsi vérifier les hypothèses émises. Le premier article présente la démarche réalisée afin de créer une nouvelle tâche d’attention visuospatiale permettant d’obtenir les indices électrophysiologiques (amplitude, latence) et comportementaux (temps de réaction) liés aux processus de traitement visuel et attentionnel précoce (P1, N1, N2-nogo, P2, Ptc) à l’attention visuelle sélective (N2pc, SPCN) et aux processus décisionnels (P3b, P3a) chez un groupe de participants sains (i.e. sans atteinte neurologique). Le deuxième article présente l’étude des effets persistants d’un TCCL sur les fonctions visuoattentionelles via l’obtention des indices électrophysiologiques ciblés (amplitude, latence) et de données comportementales (temps de réaction à la tâche et résultats aux tests neuropsychologiques) chez deux cohortes d’individus TCCL symptomatiques, l’une en phase subaigüe (3 premiers mois post-accident), l’autre en phase chronique (6 mois à 1 an post-accident), en comparaison à un groupe de participants témoins sains. Les résultats des articles présentés dans cette thèse montrent qu’il a été possible de créer une tâche simple qui permet d’étudier de façon rapide et peu coûteuse les différents niveaux de traitement de l’information impliqués dans le déploiement de l’attention visuospatiale. Par la suite, l’utilisation de cette tâche auprès d’individus atteints d’un TCCL testés en phase sub-aiguë ou en phase chronique a permis d’objectiver des profils d’atteintes et de récupération différentiels pour chacune des composantes étudiées. En effet, alors que les composantes associées au traitement précoce de l’information visuelle (P1, N1, N2) étaient intactes, certaines composantes attentionnelles (P2) et cognitivo-attentionnelles (P3a, P3b) étaient altérées, suggérant une dysfonction au niveau des dynamiques spatio-temporelles de l’attention, de l’orientation de l’attention et de la mémoire de travail, à court et/ou à long terme après le TCCL, ceci en présence de déficits neuropsychologiques en phase subaiguë surtout et d’une symptomatologie post-TCCL persistante. Cette thèse souligne l’importance de développer des outils diagnostics sensibles et exhaustifs permettant d’objectiver les divers processus et sous-processus cognitifs susceptible d’être atteints après un TCCL.
Dynamique des ambiances lumineuses - approche basée sur la photométrie vidéo d’espaces de transition
Resumo:
Les variations de la lumière naturelle lors du passage d’un espace à un autre caractérisent de manière complexe, mais importante le design d’un bâtiment. Cette adaptation visuelle s’inscrit dans un processus spatiotemporel et influe sur le confort et le bien-être de ses occupants. La littérature fait état du peu de connaissances de la relation lumière espace-temps. Cette recherche propose donc d’étudier cette relation spatio-temporelle existant entre la lumière et l’espace, afin de qualifier un parcours architectural au moyen d’une expérimentation in situ et de segments filmiques. La recherche combine l’utilisation d’un luminance-mètre, d’une caméra vidéo et d’une méthode d’analyse d’images numériques afin de permettre l’évaluation des qualités spatio-temporelles de la lumière. Le parcours architectural est analysé selon la diversité et l’intensité des ambiances lumineuses en fonction du temps permettant de décrire les perceptions visuelles d’espaces transitions. Cette méthode dynamique offre un potentiel d’analyse et de création aux concepteurs désireux d’enrichir le design de séquences spatiales en favorisant la diversité lumineuse dans l’expérience architecturale. Mots clefs: adaptation visuelle, analyse d’images, ambiance lumineuse, contraste, éclairage naturel, espaces transitions, lumière perception visuelle, vidéo, spatio-temporel.