968 resultados para soil depth change


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil degradation is widespread in the Ethiopian Highlands. Its negative impacts on soil productivity contribute to the extreme poverty of the rural population. Soil conservation is propagated as a means of reducing soil erosion, however, it is a costly investment for small-scale farming households. The present study is an attempt to show whether or not selected mechanical Soil and Water Conservation (SWC) technologies are profitable from a farmer’s point of view. A financial Cost-Benefit Analysis (CBA) is carried out to assess whether or not the considered SWC technologies are profitable from a farmer’s point of view. The CBA is supplemented by an evaluation of aspects from the economic and institutional environment. Whether or not soil conservation is profitable from a farmer’s point of view depends on a broad range of factors from the ecological, economic, political, institutional and socio-cultural sphere and also depends on the technology and the prevailing farming system. Because these factors are closely interlinked, it is often not sufficient to change or influence one to make SWC profitable. Several recommendations are formulated with regard to improving the profitability of SWC investments from a farmer’s point of view. Because the reasons for unsustainable resource use are manifold and highly interlinked, only a multi-stakeholder, multi-level and multi-objective approach is likely to offer solutions that address the underlying problems adequately.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soils are fundamental to ensuring water, energy and food security. Within the context of sus- tainable food production, it is important to share knowledge on existing and emerging tech- nologies that support land and soil monitoring. Technologies, such as remote sensing, mobile soil testing, and digital soil mapping, have the potential to identify degraded and non- /little-responsive soils, and may also provide a basis for programmes targeting the protection and rehabilitation of soils. In the absence of such information, crop production assessments are often not based on the spatio-temporal variability in soil characteristics. In addition, uncertain- ties in soil information systems are notable and build up when predictions are used for monitor- ing soil properties or biophysical modelling. Consequently, interpretations of model-based results have to be done cautiously. As such they provide a scientific, but not always manage- able, basis for farmers and/or policymakers. In general, the key incentives for stakeholders to aim for sustainable management of soils and more resilient food systems are complex at farm as well as higher levels. The same is true of drivers of soil degradation. The decision- making process aimed at sustainable soil management, be that at farm or higher level, also in- volves other goals and objectives valued by stakeholders, e.g. land governance, improved envi- ronmental quality, climate change adaptation and mitigation etc. In this dialogue session we will share ideas on recent developments in the discourse on soils, their functions and the role of soil and land information in enhancing food system resilience.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite various research activities in the last decades across the world, many challenges remain to integrate the concept of ecosystem services (ESS) in decision-making, and a coherent approach to assess and value ESS is still lacking. There are a lot of different – often context-specific – ESS frameworks with their own definitions and understanding of terms. Based on a thorough review, the EU FP7 project RECARE (www.recare-project.eu) suggests an adapted framework for ecosystem services related to soils that can be used for practical application in preventing and remediating degradation of soils in Europe. This lays the foundation for the development and selection of appropriate methods to measure, evaluate, communicate and negotiate the services we obtain from soils with stakeholders in order to improve land management. Similar to many ESS frameworks, the RECARE framework distinguishes between an ecosystem and human well-being part. As the RECARE project is focused on soil threats, this is the starting point on the ecosystem part of the framework. Soil threats affect natural capital, such as soil, water, vegetation, air and animals, and are in turn influenced by those. Within the natural capital, the RECARE framework focuses especially on soil and its properties, classified in inherent and manageable properties. The natural capital then enables and underpins soil processes, while at the same time being affected by those. Soil processes, finally, are the ecosystem’s capacity to provide services, thus they support the provision of soil functions and ESS. ESS may be utilized to produce benefits for individuals and human society. Those benefits are explicitly or implicitly valued by individuals and human society. The values placed on those benefits influence policy and decision-making and thus lead to a societal response. Individual (e.g. farmers’) and societal decision making and policy determine land management and other (human) driving forces, which in turn affect soil threats and natural capital. In order to improve ESS with Sustainable Land Management (SLM) – i.e. measures aimed to prevent or remediate soil threats, the services identified in the framework need to be “manageable” (modifiable) for the stakeholders. To this end, effects of soil threats and prevention / remediation measures are captured by key soil properties as well as through bio-physical (e.g. reduced soil loss), socio-economic (e.g. reduced workload) and socio-cultural (e.g. aesthetics) impact indicators. In order to use such indicators in RECARE, it should be possible to associate the changes in soil processes to impacts of prevention / remediation measures (SLM). This requires the indicators to be sensitive enough to small changes, but still sufficiently robust to provide evidence of the change and attribute it to SLM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ensuring sustainable use of natural resources is crucial for maintaining the basis for our livelihoods. With threats from climate change, disputes over water, biodiversity loss, competing claims on land, and migration increasing worldwide, the demands for sustainable land management (SLM) practices will only increase in the future. For years already, various national and international organizations (GOs, NGOs, donors, research institutes, etc.) have been working on alternative forms of land management. And numerous land users worldwide – especially small farmers – have been testing, adapting, and refining new and better ways of managing land. All too often, however, the resulting SLM knowledge has not been sufficiently evaluated, documented and shared. Among other things, this has often prevented valuable SLM knowledge from being channelled into evidence-based decision-making processes. Indeed, proper knowledge management is crucial for SLM to reach its full potential. Since more than 20 years, the international WOCAT network documents and promotes SLM through its global platform. As a whole, the WOCAT methodology comprises tools for documenting, evaluating, and assessing the impact of SLM practices, as well as for knowledge sharing, analysis and use for decision support in the field, at the planning level, and in scaling up identified good practices. In early 2014, WOCAT’s growth and ongoing improvement culminated in its being officially recognized by the UNCCD as the primary recommended database for SLM best practices. Over the years, the WOCAT network confirmed that SLM helps to prevent desertification, to increase biodiversity, enhance food security and to make people less vulnerable to the effects of climate variability and change. In addi- tion, it plays an important role in mitigating climate change through improving soil organic matter and increasing vegetation cover. In-depth assessments of SLM practices from desertification sites enabled an evaluation of how SLM addresses prevalent dryland threats. The impacts mentioned most were diversified and enhanced production and better management of water and soil degradation, whether through water harvesting, improving soil moisture, or reducing runoff. Among others, favourable local-scale cost-benefit relationships of SLM practices play a crucial role in their adoption. An economic analysis from the WOCAT database showed that land users perceive a large majority of the technologies as having benefits that outweigh costs in the long term. The high investment costs associated with some practices may constitute a barrier to adoption, however, where appropriate, short-term support for land users can help to promote these practices. The increased global concerns on climate change, disaster risks and food security redirect attention to, and trigger more funds for SLM. To provide the necessary evidence-based rationale for investing in SLM and to reinforce expert and land users assessments of SLM impacts, more field research using inter- and transdisciplinary approaches is needed. This includes developing methods to quantify and value ecosystem services, both on-site and off-site, and assess the resilience of SLM practices, as currently aimed at within the EU FP7 projects CASCADE and RECARE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecosystem functioning in grasslands is regulated by a range of biotic and abiotic factors, and the role of microbial communities in regulating ecosystem function has been the subject of much recent scrutiny. However, there are still knowledge gaps regarding the impacts of rainfall and vegetation change upon microbial communities and the implications of these changes for ecosystem functioning. We investigated this issue using data from an experimental mesotrophic grassland study in south-east England, which had been subjected to four years of rainfall and plant functional composition manipulations. Soil respiration, nitrogen and phosphorus stocks were measured, and the abundance and community structure of soil microbes were characterised using quantitative PCR and multiplex-TRFLP analysis, respectively. Bacterial community structure was strongly related to the plant functional composition treatments, but not the rainfall treatment. However, there was a strong effect of both rainfall change and plant functional group upon bacterial abundance. There was also a weak interactive effect of the two treatments upon fungal community structure, although fungal abundance was not affected by either treatment. Next, we used a statistical approach to assess whether treatment effects on ecosystem function were regulated by the microbial community. Our results revealed that ecosystem function was influenced by the experimental treatments, but was not related to associated changes to the microbial community. Overall, these results indicate that changes in fungal and bacterial community structure and abundance play a relatively minor role in determining grassland ecosystem function responses to precipitation and plant functional composition change, and that direct effects on soil physical and chemical properties and upon plant and microbial physiology may play a more important role.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stratigraphy, radiocarbon dating and analyses of pollen, plant macrofossils and testate amoebae were used to reconstruct the development and ecology of a small raised bog in a karst-dominated landscape in the Swiss Jura Mountains. Special focus was on past vegetation and on the history of Pinus rotundata in relation to anthropogenic and climatic influences. Testate amoebae were used to reconstruc-t past local soil pH and water-table depth. The inferred development of the Praz-Rodet bog typifies a classic hydroseral tefrestrialization of a small basin. Two features are specific for this site. First, the bog was much wetter than today for a long period; according to our hypothesis, this only changed as a consequence of human activities. Second, two hiatuses are present at the coring location (Younger Dryas--early Preboreal, and 4700-2800 cal. yr BP), the former probably caused by low lake productivity due to cold temperatures and the latter by the erosional activity of the adjacent small river. The date of 2800 cal. yr BP for renewed peat accumulation may be related to climatic change (Subboreal-Subatlantic transition). Pollen indicators failed to show one hiatus: an apparently complete pollen sequence is therefore no guarantee of an uninterrupted sediment accumulation. Evidence of early minor human impact on the vegetation in the Joux Valley dates back to c. 6850 calendar years, congruous with the early Neolithic in the Jura Mountains. The history of Pinuis rotindata appears to be more complex than previously believed. Human activity is clearly responsible for the present abundance of this species, but the tree was naturally present on the bog long before the first evidence of important human disturbance of the site (1500 cal. yr BP). It is suggested that, in karst-dominated landscapes, dense forests growing on mineral soils around raised bogs may significantly reduce summer evapotranspiration by acting as windbreaks. Forest clearance results in increased evapotranspiration, causing a lowering of the water table on the bog and a modification of the vegetation cover. This hypothesis has implications for the management of similar small raised bogs in karst-dominated landscape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims Climate and human impacts are changing the nitrogen (N) inputs and losses in terrestrial ecosystems. However, it is largely unknown how these two major drivers of global change will simultaneously influence the N cycle in drylands, the largest terrestrial biome on the planet. We conducted a global observational study to evaluate how aridity and human impacts, together with biotic and abiotic factors, affect key soil variables of the N cycle. Location Two hundred and twenty-four dryland sites from all continents except Antarctica widely differing in their environmental conditions and human influence. Methods Using a standardized field survey, we measured aridity, human impacts (i.e. proxies of land uses and air pollution), key biophysical variables (i.e. soil pH and texture and total plant cover) and six important variables related to N cycling in soils: total N, organic N, ammonium, nitrate, dissolved organic:inorganic N and N mineralization rates. We used structural equation modelling to assess the direct and indirect effects of aridity, human impacts and key biophysical variables on the N cycle. Results Human impacts increased the concentration of total N, while aridity reduced it. The effects of aridity and human impacts on the N cycle were spatially disconnected, which may favour scarcity of N in the most arid areas and promote its accumulation in the least arid areas. Main conclusions We found that increasing aridity and anthropogenic pressure are spatially disconnected in drylands. This implies that while places with low aridity and high human impact accumulate N, most arid sites with the lowest human impacts lose N. Our analyses also provide evidence that both increasing aridity and human impacts may enhance the relative dominance of inorganic N in dryland soils, having a negative impact on key functions and services provided by these ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is investigate the role of conversation in strategic change so as to enhance both theory and practice in this respect. As an investigation on how conversations shape change processes in practice, we reflect on an interpretive case study in a health care organization. Through an OD project complemented by semi-structured interviews with participants, we gained a set of data and experiences that allows us to inquire into the relationship between conversations and change in more depth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soil moisture samples were taken at eleven sites in northwest Iowa during the last few days of October 2011. Moisture samples were taken at 1-ft increments down to a 5-ft depth. Samples were weighed, oven dried, and reweighed at the ISU Northwest Research Farm. The moisture percentage was calculated from these data, and then used to calculate the inches of plant available moisture in the soil. The data from these sites are listed in the following table.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Western Wright Valley, from Wright Upper Glacier to the western end of the Dais, can be divided into three broad geomorphic regions: the elevated Labyrinth, the narrow Dais which is connected to the Labyrinth, and the North and South forks which are bifurcated by the Dais. Soil associations of Typic Haplorthels/Haploturbels with ice-cemented permafrost at < 70 cm are most common in each of these geomorphic regions. Amongst the Haplo Great Groups are patches of Salic and Typic Anhyorthels with ice-cemented permafrost at > 70 cm. They are developed in situ in strongly weathered drift with very low surface boulder frequency and occur on the upper erosion surface of the Labyrinth and on the Dais. Typic Anhyorthels also occur at lower elevation on sinuous and patchy Wright Upper III drift within the forks. Salic Aquorthels exist only in the South Fork marginal to Don Juan Pond, whereas Salic Haplorthels occur in low areas of both South and North forks where any water table is > 50 cm. Most soils within the study area have an alkaline pH dominated by Na+ and Cl- ions. The low salt accumulation within Haplorthels/Haploturbels may be due to limited depth of soil development and possibly leaching.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents the results of high-resolution sedimentological and clay mineralogical investigations on sediments from ODP Sites 908A and 909AlC located in the central Fram Strait. The objective was to reconstruct the paleoclimate and paleoceanography of the high northern latitudes since the middle Miocene. The sediments are characterised in particular by a distinctive input of ice-rafted material, which most probably occurs since 6 Ma and very likely since 15 Ma. A change in the source area at 1 1.2 Ma is clearly marked by variations within clay mineral composition and increasing accumulation rates. This is interpreted as a result of an increase in water mass exchange through the Fram Strait. A further period of increasing exchange between 4-3 Ma is identified by granulometric investigations and points to a synchronous intensification of deep water production in the North Atlantic during this time interval. A comparison of the components of coarse and clay fraction clearly shows that both are not delivered by the Same transport process. The input of the clay fraction can be related to transport mechanisms through sea ice and glaciers and very likely also through oceanic currents. A reconstruction of source areas for clay minerals is possible only with some restrictions. High smectite contents in middle and late Miocene sediments indicate a background signal produced by soil formation together with sediment input, possibly originating from the Greenland- Scotland Ridge. The applicability of clay mineral distribution as a climate proxy for the high northern latitudes can be confirmed. Based on a comparison of sediments from Site 909C, characterised by the smectite/illite and chlorite ratio, with regional and global climatic records (oxygen isotopes), a middle Miocene cooling phase between 14.8-14.6 Ma can be proposed. A further cooling phase between 10-9 Ma clearly shows similarities in its Progress toward drastic decrease in carbonate sedimentation and preservation in the eastern equatorial Pacific. The modification in sea water and atmosphere chemistry may represent a possible link due to the built-up of equatorial carbonate platforms. Between 4.8-4.6 Ma clay mineral distribution indicates a distinct cooling trend in the Fram Strait region. This is not accompanied by relevant glaciation, which would otherwise be indicated by the coarse fraction. The intensification of glaciation in the northern hemisphere is distinctly documented by a rapid increase of illite and chlorite starting from 3.3 Ma, which corresponds to oxygen isotope data trends from North Atlantic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shipboard examination of volcanic and sedimentary strata at Site 786 suggested that at least four types of breccias are present: flow-top breccias, associated with cooling and breakup on the upper surface of lava flows; autobreccias, formed by in-situ alteration at the base of flows; fault-gouge breccias; and true sedimentary breccias derived from weathering and erosion of underlying flows. It is virtually impossible to assess the origin of breccia matrix by textural and mineralogical analyses alone. However, it is fundamental for our understanding of breccia provenance to determine the source component of the matrix material. Whether the matrix is uniquely clastderived can be determined by geochemical fingerprinting. Trace elements that are immobile during weathering and alteration do not change their relative abundances. A contribution to the matrix from any source with an immobile trace element signature different from that of the clasts would appear as a perturbation of the trace element signature of the matrix. Trace element analysis of bulk samples from clasts and matrix material in individual breccia units was undertaken in a fashion similar to that used by Brimhall and Dietrich (1987, doi:10.1016/0016-7037(87)90070-6) in analyzing soil provenance: (1) to help distinguish between sedimentary and volcanic breccias, (2) to determine the degree of mixing and depth of erosion in sedimentary breccias, and (3) to analyze the local provenance of the individual breccia components (matrix and clasts). The following elements were analyzed by X-ray fluorescence (XRF): Rb, Sr, Ba, U, Zr, Cu, Zn, Ti, Cr, and V. Of these elements, Zr and Ti probably exhibit truly immobile behavior (Humphris and Thompson, 1978, doi:10.1016/0016-7037(78)90222-3 ). The remaining elements are useful as a reference for the extent of compositional change during the formation of matrix material (Brimhall and Dietrich, 1987, doi:10.1016/0016-7037(87)90070-6).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over a 2-year study, we investigated the effect of environmental change on the diversity and abundance of soil arthropod communities (Acari and Collembola) in the Maritime Antarctic and the Falkland Islands. Open Top Chambers (OTCs), as used extensively in the framework of the northern boreal International Tundra Experiment (ITEX), were used to increase the temperature in contrasting communities on three islands along a latitudinal temperature gradient, ranging from the Falkland Islands (51°S, mean annual temperature 7.5 °C) to Signy Island (60°S, -2.3°C) and Anchorage Island (67°S, -3.8°C). At each island an open and a closed plant community were studied: lichen vs. moss at the Antarctic sites, and grass vs. dwarf shrub at the Falkland Islands. The OTCs raised the soil surface temperature during most months of the year. During the summer the level of warming achieved was 1.7 °C at the Falkland Islands, 0.7 °C at Signy Island, and 1.1 °C at Anchorage Island. The native arthropod community diversity decreased with increasing latitude. In contrast with this pattern, Collembola abundance in the closed vegetation (dwarf shrub or moss) communities increased by at least an order of magnitude from the Falkland Islands (9.0 +/- 2 x 10**3 ind./m**2) to Signy (3.3 +/- 8.0 x 10**4 ind./m**2) and Anchorage Island (3.1 +/- 0.82 x 10**5 ind./m**2). The abundance of Acari did not show a latitudinal trend. Abundance and diversity of Acari and Collembola were unaffected by the warming treatment on the Falkland Islands and Anchorage Island. However, after two seasons of experimental warming, the total abundance of Collembola decreased (p < 0.05) in the lichen community on Signy Island as a result of the population decline of the isotomid Cryptopygus antarcticus. In the same lichen community there was also a decline (p < 0.05) of the mesostigmatid predatory mite Gamasellus racovitzai, and a significant increase in the total number of Prostigmata. Overall, our data suggest that the consequences of an experimental temperature increase of 1-2°C, comparable to the magnitude currently seen through recent climate change in the Antarctic Peninsula region, on soil arthropod communities in this region may not be similar for each location but is most likely to be small and initially slow to develop.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geochemical and mineralogical proxies for paleoenvironmental conditions have the underlying assumption that climate variations have an impact on terrestrial weathering conditions. Varying properties of terrigenous sediments deposited at sea are therefore often interpreted in terms of paleoenvironmental change. Also in gravity core GeoB9307-3 (18° 33.99' S, 37° 22.89' E), located off the Zambezi River, environmental changes during Heinrich Stadial 1 (HS 1) and the Younger Dryas (YD) are accompanied by changing properties of the terrigenous sediment fraction. Our study focuses on the relationship of variability in the hydrological system and changes in the magnetic properties, major element geochemistry and granulometry of the sediments. We propose that changes in bulk sedimentary properties concur with environmental change, although not as a direct response of climate driven pedogenic processes. Spatial varying rainfall intensities on a sub-basin scale modify sediment export from different parts of the Zambezi River basin. During humid phases, such as HS 1 and the YD, sediment was mainly exported from the coastal areas, while during more arid phases sediments mirror the hinterland soil and lithological properties and are likely derived from the northern Shire sub-basin. We propose that a de-coupling of sedimentological and organic signals with variable discharge and erosional activity can occur.