914 resultados para software as teaching tool
Resumo:
An accurate estimate of machining time is very important for predicting delivery time, manufacturing costs, and also to help production process planning. Most commercial CAM software systems estimate the machining time in milling operations simply by dividing the entire tool path length by the programmed feed rate. This time estimate differs drastically from the real process time because the feed rate is not always constant due to machine and computer numerical controlled (CNC) limitations. This study presents a practical mechanistic method for milling time estimation when machining free-form geometries. The method considers a variable called machine response time (MRT) which characterizes the real CNC machine`s capacity to move in high feed rates in free-form geometries. MRT is a global performance feature which can be obtained for any type of CNC machine configuration by carrying out a simple test. For validating the methodology, a workpiece was used to generate NC programs for five different types of CNC machines. A practical industrial case study was also carried out to validate the method. The results indicated that MRT, and consequently, the real machining time, depends on the CNC machine`s potential: furthermore, the greater MRT, the larger the difference between predicted milling time and real milling time. The proposed method achieved an error range from 0.3% to 12% of the real machining time, whereas the CAM estimation achieved from 211% to 1244% error. The MRT-based process is also suggested as an instrument for helping in machine tool benchmarking.
Resumo:
The importance of a careful selection of rocks used in building facade cladding is highlighted. A simple and viable methodology for the structural detailing of dimension stones and the verification of the global performance is presented based on a Strap software simulation. The results obtained proved the applicability of the proposed structural dimensioning methodology which represents an excellent simple tool for dimensioning rock slabs used for building facade cladding. The Strap software satisfactorily simulated the structural conditions of the stone slabs under the studied conditions, allowing the determination of alternative slab dimensions and the verification of the cladding strength at the support.
Resumo:
Effluents from pulp mill are usually toxic and mutagenic. This characteristic is mainly a consequence of xenobiotic compounds that are formed during the process. Global parameters such as chemical oxidation demand, total organic carbon and others, do not permit identify whether the toxic potential was remedied by the treatments or not. The objective of this research was to evaluate the performance of an horizontal-flow anaerobic immobilized biomass reactor (HAIB) treating the bleaching effluent from a Kraft pulp mill using toxicological (Daphnia similis - Ceriodaphnia sdvestrii) mutagenicity and citotoxicological assays (Allium cepa L). The results showed high sensibility of the test-organisms and capability of the anaerobic reactor to remove compounds that are exerting toxic and mutagenic effects. The bioassays represented an attractive alternative to water quality analyzes and the performance evaluation of treatments.
Resumo:
AISI D2 is the most commonly used cold-work tool steel of its grade. It offers high hardenability, low distortion after quenching, high resistance to softening and good wear resistance. The use of appropriate hard coatings on this steel can further improve its wear resistance. Boronizing is a surface treatment of Boron diffusion into the substrate. In this work boride layers were formed on AISI D2 steel using borax baths containing iron-titanium and aluminium, at 800 degrees C and 1000 degrees C during 4 h. The borided treated steel was characterized by optical microscopy, Vickers microhardness, X-ray diffraction (XRD) and glow discharge optical spectroscopy (GDOS) to verify the effect of the bath compositions and treatment temperatures in the layer formation. Depending on the bath composition, Fe(2)B or FeB was the predominant phase in the boride layers. The layers exhibited ""saw-tooth"" morphology at the substrate interface; layer thicknesses varied from 60 to 120 mu m, and hardness in the range of 1596-1744 HV were obtained. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
High urban transport energy consumption is directly influenced by transport energy dependence. Dramatic reductions in urban transport energy dependence or consumption are not yet being widely observed despite the variety of urban planning tools currently available. A new urban development framework is presented to tackle this issue that makes use of a recently developed and successfully trialed GIS-based tool, the Transport Energy Specification (TES). The TES was simulated on a neighborhood in Sao Carlos, Brazil. In the simulation, energy dependence was reduced by a factor of 8 through activity location or infrastructure modifications to the built environment.
Resumo:
This work presents a novel dressing technique that allows the inscription of pre-configurable patterns, or textures, on the grinding wheel surface. An electro-mechanical exciter connected to the dressing tool receives synchronized signal from a control software engraving patterns on the grinding wheel. The dressing and grinding operations were evaluated using the AE mapping technique. The presented applications show the use of textured grinding wheels for better grinding process performance in conventional applications and also for the production of patterned surfaces in order to change its functional performance. The results and analysis allow a better understanding of the grinding mechanism with patterned wheels. With the application of the proposed method it was possible to inscribe different patterns on workpieces and also to increase the grinding performance in conventional applications. (C) 2010 CIRP.
Resumo:
Power distribution automation and control are import-ant tools in the current restructured electricity markets. Unfortunately, due to its stochastic nature, distribution systems faults are hardly avoidable. This paper proposes a novel fault diagnosis scheme for power distribution systems, composed by three different processes: fault detection and classification, fault location, and fault section determination. The fault detection and classification technique is wavelet based. The fault-location technique is impedance based and uses local voltage and current fundamental phasors. The fault section determination method is artificial neural network based and uses the local current and voltage signals to estimate the faulted section. The proposed hybrid scheme was validated through Alternate Transient Program/Electromagentic Transients Program simulations and was implemented as embedded software. It is currently used as a fault diagnosis tool in a Southern Brazilian power distribution company.
Resumo:
This paper presents a free software tool that supports the next-generation Mobile Communications, through the automatic generation of models of components and electronic devices based on neural networks. This tool enables the creation, training, validation and simulation of the model directly from measurements made on devices of interest, using an interface totally oriented to non-experts in neural models. The resulting model can be exported automatically to a traditional circuit simulator to test different scenarios.
Resumo:
The use of finite element analysis (FEA) to design electrical motors has increased significantly in the past few years due the increasingly better performance of modern computers. Even though the analytical software remains the most used tool, the FEA is widely used to refine the analysis and gives the final design to be prototyped. The power factor, a standard data of motor manufactures data sheet is important because it shows how much reactive power is consumed by the motor. This data becomes important when the motor is connected to network. However, the calculation of power factor is not an easy task. Due to the saturation phenomena the input motor current has a high level of harmonics that cannot be neglected. In this work the FEA is used to evaluate a proposed (not limitative) methodology to estimate the power factor or displacement factor of a small single-phase induction motor. Results of simulations and test are compared.
Resumo:
AISI H13 tool steel discs were pulsed plasma minded during different times at a constant temperature of 400 degrees C Wear tests were performed in order to study the acting wear mechanisms The samples were characterized by X-ray diffraction, scanning electron microscopy and hardness measurements The results showed that longer nitriding times reduce the wear volumes. The friction coefficient was 0.20 +/- 0 05 for all tested conditions and depends strongly on the presence of debris After wear tests, the wear tracks were characterized by optical and scanning electron microscopy and the wear mechanisms were observed to change from low cycle fatigue or plastic shakedown to long cycle fatigue These mechanisms were correlated to the microstructure and hardness of the nitrided layer (C) 2010 Elsevier B V All rights reserved
Resumo:
This paper presents a reliability-based analysis for calculating critical tool life in machining processes. It is possible to determine the running time for each tool involved in the process by obtaining the operations sequence for the machining procedure. Usually, the reliability of an operation depends on three independent factors: operator, machine-tool and cutting tool. The reliability of a part manufacturing process is mainly determined by the cutting time for each job and by the sequence of operations, defined by the series configuration. An algorithm is presented to define when the cutting tool must be changed. The proposed algorithm is used to evaluate the reliability of a manufacturing process composed of turning and drilling operations. The reliability of the turning operation is modeled based on data presented in the literature, and from experimental results, a statistical distribution of drilling tool wear was defined, and the reliability of the drilling process was modeled. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper it is presented the theoretical background, the architecture (using the ""4+1"" model), and the use of the library for execution of adaptive devices, AdapLib. This library was created seeking to be accurate to the adaptive devices theory, and to allow its easy extension considering the specific details of solutions that employ this kind of device. As an example, it is presented a case study in which the library was used to create a proof of concept to monitor and diagnose problems in an online news portal.
Resumo:
This paper presents a rheological investigation of pure gypsum (PG) and a commercial gypsum-lime-filler plaster (CP) using the modified Vicat apparatus and squeeze flow method. The samples were tested at several different intervals after manual or mechanical mixing. The results confirmed squeeze flow to be more sensitive in determining fresh paste behavior than the modified Vicat apparatus. PG set faster when prepared in mechanical mixer than when manually mixed. Conversely, the CP composition presented longer setting when mixed mechanically. The study also included the analysis of two ready-to-use polymer-based products for leveling and rendering (drywall joint compound - DJC; acrylic putty - AP) measured by squeeze flow and compared to the commercial composition. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This work analysed the influence of storage in the quality of forest biomass for energy generation in the region of Lages, Brazil. Logs of Pinus taeda L. and Eucalyptus dunnii Maiden were harvested and piled during the four different seasons: spring, summer, fall and winter. The analyses were performed immediately after harvesting (without being stored), after two, four and six months of storage. The evaluated properties were: moisture content, gross and net calorific value, ash content and solubility in cold water, hot water and sodium hydroxide. The species composition, storage span, harvesting season and storage season influenced the forest biomass characteristics. In general, eucalyptus presented better results than pine, losing moisture faster, having less alteration in the chemical composition and producing greater energetic gain over storage time. For both species, the ideal storage time was four months. Furthermore, spring and summer were the best harvesting seasons. Thus, if the forest biomass is harvested at the end of winter or beginning of spring with subsequent storage during the summer, this biomass will have the best performance for energy production. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The Biopharmaceutics Classification System (BCS) is a tool that was created to categorize drugs into different groups according to their solubility and permeability characteristics. Through a combination of these factors and physiological parameters, it is possible to understand the absorption behavior of a drug in the gastrointestinal tract, thus contributing to cost and time reductions in drug development, as well as reducing exposure of human subjects during in vivo trials. Solubility is attained by determining the equilibrium under conditions of physiological pH, while different methods may be employed for evaluating permeability. On the other hand, the intrinsic dissolution rate (IDR), which is defined as the rate of dissolution of a pure substance under constant temperature, pH, and surface area conditions, among others, may present greater correlation to the in vivo dissolution dynamic than the solubility test. The purpose of this work is to discuss the intrinsic dissolution test as a tool for determining the solubility of drugs within the scope of the Biopharmaceutics Classification System (BCS).