992 resultados para soft sediments
Resumo:
The problem of insufficient age-control limits the utilisation of the 8.2 ka BP event for modelling freshwater forcing in climate change studies. High-resolution radiocarbon dates, magnetic susceptibility and lithostratigraphic evidence from a lake sediment core from Nedre Hervavatnet located at Sygnefjell in western Norway provide a record of the early Holocene. We use the method of radiocarbon wiggle-match dating of the lake sediments using the non-linear relationship between the C-14 calibration curve and the consecutive accumulation order of the sample series in order to build a high-resolution age-model. The timing and duration of Holocene environmental changes is estimated using 38 AMS radiocarbon dates on terrestrial macrofossils, insects and chironomids covering the time period from 9750 to 1180 cal BP. Chironomids, Salix and Betula leaves produce the most consistent results. Sedimentological and physical properties of the core suggest that three meltwater events with high sedimentation rates are superimposed on a long-term trend with glacier retreat between 9750 and 8000 cal BP. The lake sediment sequence of Nedre Hervavatnet demonstrates the following: only a reliable high-resolution geochronology based on carefully selected terrestrial macrofossils allows the reconstruction of a more refined and complex environmental change history before and during the 8.2 ka event. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Saturable absorption is a phenomenon readily seen in the optical and infrared wavelengths. It has never been observed in core-electron transitions owing to the short lifetime of the excited states involved and the high intensities of the soft X-rays needed. We report saturable absorption of an L-shell transition in aluminium using record intensities over 10(16)W cm(-2) at a photon energy of 92 eV. From a consideration of the relevant timescales, we infer that immediately after the X-rays have passed, the sample is in an exotic state where all of the aluminium atoms have an L-shell hole, and the valence band has approximately a 9 eV temperature, whereas the atoms are still on their crystallographic positions. Subsequently, Auger decay heats the material to the warm dense matter regime, at around 25 eV temperatures. The method is an ideal candidate to study homogeneous warm dense matter, highly relevant to planetary science, astrophysics and inertial confinement fusion.
Resumo:
The growing importance of understanding past abrupt climate variability at a regional and global scale has led to the realisation that independent chronologies of past environmental change need to be compared between various archives. This has in turn led to attempts at significant improvements in the required precision at which records can be dated. Radiocarbon dating is still the most prominent method for dating organic material from terrestrial and marine archives, and as such many of the recent developments in improving precision have been aimed at this technique. These include: (1) selection of the most suitable datable fractions within a record, (2) the development of better calibration curves, and (3) more precise age modelling techniques. While much attention has been focussed oil the first two items, testing the possibilities of the relatively new age modelling approaches has not received much attention. Here, we test the potential for methods designed to significantly improve precision in radiocarbon-based age models, wiggle match dating and various forms of Bayesian analyses. We demonstrate that while all of the methods can perform very well, in some scenarios, caution must be taken when applying them. It appears that an integrated approach is required in real life dating situations where more than one model is applied, with strict error calculation, and with the integration of radiocarbon data with sedimentological analyses of site formation processes. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The mechanism whereby the foundation loading is transmitted through stone the column (included in soft clay) has received less attention from researchers. This paper reports on some interesting findings obtained from a laboratory-based model study in respect of this issue. The stone column, included in the soft clay bed was subjected to foundation loading under drained conditions. The results show, probably for the first time, how the foundation loadings are transmitted through the column and indeed the existence of “negative skin friction” (a widely accepted phenomena in solid piles) in granular columns in soft clays.
Resumo:
Caves have yielded some of the most globally important archaeological sequences, but often their interpretation has suffered from assumptions about cave sedimentary processes. Caves contain distinctive sedimentary environments: this has major implications for the understanding of contained archaeological materials. This paper describes and analyses the Holocene sediments in the Haua Fteah, a sequence regarded as essentially continuous by the original excavator. 50 years after it was first excavated, the Haua’s Epipalaeolithic to post-Classical chronological range and rich finds make it still the key Holocene archaeological site in North Africa. The reassessment shows, however, that the sequence is strongly discontinuous and this has major implications for the reinterpretation of the site, as the highlyresolved archaeological record is thus likely to reflect a series of brief occupations, rather than continuous human activity. As with many caves, the sedimentary record in the Haua Fteah is an extremely sensitive indicator of environments and processes in the wider landscape. Secure understanding of sedimentary process, from analysis of the highly individual records found in caves, is essential for full understanding of their contained archaeology.
Resumo:
A new elastic–viscoplastic (EVP) soil model has been used to simulate the measured deformation response of a soft estuarine soil loaded by a stage-constructed embankment. The simulation incorporates prefabricated vertical drains installed in the foundation soils and reinforcement installed at the base of the embankment. The numerical simulations closely matched the temporal changes in surface settlement beneath the centerline and shoulder of the embankment. More importantly, the elastic–viscoplastic model simulated the pattern and magnitudes of the lateral deformations beneath the toe of the embankment — a notoriously difficult aspect of modelling the deformation response of soft soils. Simulation of the excess pore-water pressure proved more difficult because of the heterogeneous nature of the estuarine deposit. Excess pore-water pressures were, however, mapped reasonably well at three of the six monitoring locations. The simulations were achieved using a small set of material constants that can easily be obtained from standard laboratory tests. This study validates the use of the EVP model for problems involving soft soil deposits beneath loading from a geotechnical structure.