799 resultados para sliding wear
Resumo:
Background: Material wear testing is an important technique in the development and evaluation of materials for use in implant for total knee arthroplasty. Since a knee joint induces a complex rolling-gliding movement, standardised material wear testing devices such as Pin-on-Disc or Ring-on-Disc testers are suitable to only a limited extent because they generate pure gliding motion only.Methods: A rolling-gliding wear simulator was thus designed, constructed and implemented, which simulates and reproduces the rolling-gliding movement and loading of the knee joint on specimens of simplified geometry. The technical concept was to run a base-plate, representing the tibia plateau, against a pivoted cylindrical counter-body, representing one femur condyle under an axial load. A rolling movement occurs as a result of the friction and pure gliding is induced by limiting the rotation of the cylindrical counter-body. The set up also enables simplified specimens handling and removal for gravimetrical wear measurements. Long-term wear tests and gravimetrical wear measurements were carried out on the well known material pairings: cobalt chrome-polyethylene, ceramic-polyethylene and ceramic-ceramic, over three million motion cycles to allow material comparisons to be made.Results: The observed differences in wear rates between cobalt-chrome on polyethylene and ceramic on polyethylene pairings were similar to the differences of published data for existing material-pairings. Test results on ceramic-ceramic pairings of different frontal-plane geometry and surface roughness displayed low wear rates and no fracture failures.Conclusions: The presented set up is able to simulate the rolling-gliding movement of the knee joint, is easy to use, and requires a minimum of user intervention or monitoring. It is suitable for long-term testing, and therefore a useful tool for the investigation of new and promising materials which are of interest for application in knee joint replacement implants. © 2010 Richter et al; licensee BioMed Central Ltd.
Resumo:
Purpose: The primary outcome of this study is to compare the axial length growth of white European myopic children wearing orthokeratology contact lenses (OK) to a control group (CT) over a 7-year period. Methods: Subjects 6–12 years of age with myopia −0.75 to −4.00DS and astigmatism ≤1.00DC were prospectively allocated OK or distance single-vision spectacles (SV) correction. Measurements of axial length (Zeiss IOLMaster), corneal topography, and cycloplegic refraction were taken at 6-month intervals over a 2-year period. Subjects were invited to return to the clinic approximately 5 years later (i.e., 7 years after the beginning of the study) for assessment of their ocular refractive and biometric components. The CT consisted of 4 SV and 12 subjects who switched from SV to soft contact lens wear after the initial 2 years of SV lens wear. Changes in axial length relative to baseline over a 7-year period were compared between groups. Results: Fourteen and 16 subjects from the OK and CT groups, respectively, were examined 6.7 ± 0.5 years after the beginning of the study. Statistically significant changes in the axial length were found over time and between groups (both p <0.001), but not for the time*group interaction (p = 0.125). The change in the axial length for the OK group was 22% (p = 0.328), 42% (p = 0.007), 40% (p = 0.020), 41% (p = 0.013), and 33% (p = 0.062) lower than the CT group following 6, 12, 18, 24, and 84 months of lens wear, respectively. Conclusion: A trend toward a reduction in the rate of axial elongation of the order of 33% was found in the OK group in comparison to the CT group following 7 years of lens wear.
Resumo:
Purpose: In the present study, we consider mechanical properties of phosphate glasses under high temperatureinduced and under friction-induced cross-linking, which enhance the modulus of elasticity. Design/methodology/approach: Two nanomechanical properties are evaluated, the first parameter is the modulus of elasticity (E) (or Young's modulus) and the second parameter is the hardness (H). Zinc meta-, pyro - and orthophosphates were recognized as amorphous-colloidal nanoparticles were synthesized under laboratory conditions and showed antiwear properties in engine oil. Findings: Young's modulus of the phosphate glasses formed under high temperature was in the 60-89 GPa range. For phosphate tribofilm formed under friction hardness and the Young's modulus were in the range of 2-10 GPa and 40-215 GPa, respectively. The degree of cross-linking during friction is provided by internal pressure of about 600 MPa and temperature close to 1000°C enhancing mechanical properties by factor of 3 (see Fig 1). Research limitations/implications: The addition of iron or aluminum ions to phosphate glasses under high temperature - and friction-induced amorphization of zinc metaphosphate and pyrophosphate tends to provide more cross-linking and mechanically stronger structures. Iron and aluminum (FeO4 or AlO4 units), incorporated into phosphate structure as network formers, contribute to the anion network bonding by converting the P=O bonds into bridging oxygen. Future work should consider on development of new of materials prepared by solgel processes, eg., zinc (II)-silicic acid. Originality/value: This paper analyses the friction pressure-induced and temperature–induced the two factors lead phosphate tribofilm glasses to chemically advanced glass structures, which may enhance the wear inhibition. Adding the coordinating ions alters the pressure at which cross-linking occurs and increases the antiwear properties of the surface material significantly.
Resumo:
This is an initial report of the PolyU SD part of the team to study Pre-fabricated Building Design and Construction Methodology and marks the completion of Phase 1. It follows our first notes prepared for the meeting on 2 February that identified some critical issues including future lifestyles, life expectancy of buildings, sustainability, size, flexibility and planning considerations. It is also an expansion of our presentation in Dongguan on 23 February. It is not a comprehensive survey of existing approaches or possible ways forward, but it has homed in on certain specific issues and does give specific examples to make the suggestions concrete. It is recommended that more comprehensive research be done to establish previous work and experience internationally. It is also recommended that more research be done on lifestyles as a preliminary to developing at least three concepts for evaluation before proceeding to the detailed design of one concept for full prototyping and market testing. The goal at this point is not to define a single direction but to suggest several future trajectories for further consideration. By the same token, this report is not intended as an exhaustive description of the considerable base of knowledge and ideas brought by the PolyU team to this exciting task. Before taking on an issue of this magnitude and importance in the definition of Hong Kong's future, one must carry out a thoughtful analysis of the issues at hand and an informed definition of paradigms, directions, goals and methods whereby our energies can be best used in the next steps. This report is the result of this analysis
Resumo:
Growth rods are commonly used for the treatment of scoliosis in the immature spine. Many variations have been proposed but breakage of implants is a common problem. Growth rod insertion commonly involves large exposures at initial insertion followed by multiple smaller procedures for lengthening. We present our early experiences using a percutaneous technique of insertion of a new titanium mobile bearing implant (Medtronic Inc). The implant allows some rotatory motion in the middle of the construct thus reducing construct stresses and thus possibly reducing rod breakage risk. Based on this small initial series with 12 months follow-up, percutaneous insertion of growth rods using the new implant is a safe and reliable technique although the infection rate in our sample was of note. This may be related to the titanium wear and inflammation seen in the soft tissues at time of operation and visualised on histology. No implants have required removal due to infection, and all infections were treated with debridement at next lengthening and suppressive antibiotics. Propionibacterium is one of the commonest infections seen with spinal implants and sometimes does not respond to simple antibiotic suppression. The technique allows preservation of the soft tissues until definitive fusion is needed and may lead to a decrease in hospital stay. The implant is low profile and seems to offer advantages over other systems on the market. Further follow up is needed to look at longer term outcomes with this new implant type.
Resumo:
Mechanical harmonic transmissions are relatively new kind of drives having several unusual features. For example, they can provide reduction ratio up to 500:1 in one stage, have very small teeth module compared to conventional drives and very large number of teeth (up to 1000) on a flexible gear. If for conventional drives manufacturing methods are well-developed, fabrication of large size harmonic drives presents a challenge. For example, how to fabricate a thin shell of 1.7m in diameter and wall thickness of 30mm having high precision external teeth at one end and internal splines at the other end? It is so flexible that conventional fabrication methods become unsuitable. In this paper special fabrication methods are discussed that can be used for manufacturing of large size harmonic drive components. They include electro-slag welding and refining, the use of special expandable devices to locate and hold a flexible gear, welding peripheral parts of disks with wear resistant materials with subsequent machining and others. These fabrication methods proved to be effective and harmonic drives built with the use of these innovative technologies have been installed on heavy metallurgical equipment and successfully tested.
Resumo:
A bicycle ergometer is a scientific device used by exercise physiologists which attempts to mimic on-road cycling characteristics such as foot technique, EMG activity, VO2, VCO2 and rider cardiology in a laboratory environment. Presently there are no known useful scientific ergometers that mimic these characteristics and are able to provide a satisfactory controlled resistance that is independent of speed. Previous research has suggested the use of a Magneto-Rheological (MR) Fluid as part of the ergometer design, as when used in a rotary brake application it is able to be controlled electronically to increase resistance instantly and independent of speed. In the target application, MR fluids are subject to immense tribological wear and temperature during viscous shearing, and will eventually show some degree of deterioration which is usually manifested as an increase in off-state viscosity. It is not known exactly how the fluid fails, however the amount of deterioration is related to the shear rate, temperature and duration and directly related to the power dissipation. Currently, there is very little literature that investigates the flow and thermal characteristics of MR fluid tribology using CFD. In this paper, we present initial work that aims to improve understanding of MR fluid wear via CFD modelling using Fluent, and results from the model are compared with those obtained from a experimental test rig of an MR fluid-based bicycle ergometer.
Resumo:
Measuring social and environmental metrics of property is necessary for meaningful triple bottom line (TBL) assessments. This paper demonstrates how relevant indicators derived from environmental rating systems provide for reasonably straightforward collations of performance scores that support adjustments based on a sliding scale. It also highlights the absence of a corresponding consensus of important social metrics representing the third leg of the TBL tripod. Assessing TBL may be unavoidably imprecise, but if valuers and managers continue to ignore TBL concerns, their assessments may soon be less relevant given the emerging institutional milieu informing and reflecting business practices and society expectations.
Resumo:
A low-cost test bed was made from a modified heavy vehicle (HV) brake tester. By rotating a test HV’s wheel on an eccentric roller, a known vibration was imparted to the wheel under test. A control case for dampers in good condition was compared with two test cases of ineffective shock absorbers. Measurement of the forces at the bearings of the roller provided an indication of the HV wheel-forces. Where the level of serviceability of the shock absorbers varied, differences in wheel load provided a quality indicator corresponding to a change of damper characteristic. Conclusions regarding the levels of damper maintenance beyond which HV suspensions cause road damage and dynamic wheel forces at the threshold of tyre wear at which HV shock absorbers are normally replaced are presented.