994 resultados para silicon etching
Resumo:
We demonstrate self-aligned approach for fabrication of hybrid silicon plasmonic waveguide. The demonstrated structure provides both nanoscale confinement together with propagation length of 100 microns. Near-field measurements of propagation and coupling loss are also presented. © 2011 Optical Society of America.
Resumo:
We demonstrate an integrated on-chip locally-oxidized silicon surface-plasmon Schottky detector for telecom wavelengths based on the internal photoemission process. Theoretical model and experimental results will be presented and discussed. © 2011 Optical Society of America.
Resumo:
We demonstrate the design, fabrication and experimental characterization of the spatial mode selector that transmit only the second silicon waveguide mode. Nanofabrication results and near field measurements are presented. © 2009 Optical Society of America.
Resumo:
This paper demonstrates on chip sub bandgap detection of light at 1550 nm wavelength using the configuration of interleaved PN junctions along a silicon waveguide. The device operates under reverse bias in a nearly fully depleted mode, thus minimizing the free carrier plasma losses and significantly increases the detection volume at the same time. Furthermore, substantial enhancement in responsivity is observed by the transition from reverse bias to avalanche breakdown regime. The observed high responsivity of up to 7.2 mA/W at 3 V is attributed to defect assisted photogeneration, where the defects are related to the surface and the bulk of the waveguide. © 2014 AIP Publishing LLC.
Resumo:
Liquid crystal on silicon (LCOS) is one of the most exciting technologies, combining the optical modulation characteristics of liquid crystals with the power and compactness of a silicon backplane. The objective of our work is to improve cell assembly and inspection methods by introducing new equipment for automated assembly and by using an optical inspection microscope. A Suss-MicroTec Universal device bonder is used for precision assembly and device packaging and an Olympus BX51 high resolution microscope is employed for device inspection. © 2009 Optical Society of America.
Resumo:
We demonstrate the design, fabrication and experimental characterization of submicron-scale silicon waveguide fabricated by local oxidation of silicon and provide guidelines for controlling its profile. Near field measurements shows submicron confinement of the optical mode. © 2010 Optical Society of America.
Resumo:
We demonstrate an on-chip all-optical broadband modulation of light in submicron silicon waveguide based on linear free carriers' absorption using side coupling configuration of a pump signal. © 2010 Optical Society of America.
Resumo:
We experimentally demonstrate an ultra-thin silicon nitride microring resonator operating at wavelength of 970nm that is favorable for large variety of biophotonic applications. Optimization parameters for improved sensitivity and light-mater interaction are presented. © 2010 Optical Society of America.
Resumo:
We demonstrate the design, fabrication and experimental characterization of the spatial mode selector that transmit only the second silicon waveguide mode. Nanofabrication results and near field measurements are presented. © 2009 Optical Society of America.
Resumo:
We demonstrate the design, fabrication and experimental characterization of the spatial mode selector that transmit only the second silicon waveguide mode. Nanofabrication results and near field measurements are presented. © 2009 Optical Society of America.
Resumo:
Electronic systems are a very good platform for sensing biological signals for fast point-of-care diagnostics or threat detection. One of the solutions is the lab-on-a-chip integrated circuit (IC), which is low cost and high reliability, offering the possibility for label-free detection. In recent years, similar integrated biosensors based on the conventional complementary metal oxide semiconductor (CMOS) technology have been reported. However, post-fabrication processes are essential for all classes of CMOS biochips, requiring biocompatible electrode deposition and circuit encapsulation. In this work, we present an amorphous silicon (a-Si) thin film transistor (TFT) array based sensing approach, which greatly simplifies the fabrication procedures and even decreases the cost of the biosensor. The device contains several identical sensor pixels with amplifiers to boost the sensitivity. Ring oscillator and logic circuits are also integrated to achieve different measurement methodologies, including electro-analytical methods such as amperometric and cyclic voltammetric modes. The system also supports different operational modes. For example, depending on the required detection arrangement, a sample droplet could be placed on the sensing pads or the device could be immersed into the sample solution for real time in-situ measurement. The entire system is designed and fabricated using a low temperature TFT process that is compatible to plastic substrates. No additional processing is required prior to biological measurement. A Cr/Au double layer is used for the biological-electronic interface. The success of the TFT-based system used in this work will open new avenues for flexible label-free or low-cost disposable biosensors. © 2013 Materials Research Society.
Resumo:
An APD is shown to improve the noise figure of a lossy optical link compared to a PIN-TIA combination of equivalent gain. Transmission of IEEE 802.11g WLAN signals is demonstrated with 18dB optical link loss. © 2009 Optical Society of America.
Resumo:
We used a cyclic reactive ion etching (RIE) process to increase the Co catalyst density on a cobalt disilicide (CoSi2) substrate for carbon nanotube (CNT) growth. Each cycle of catalyst formation consists of a room temperature RIE step and an annealing step at 450 °C. The RIE step transfers the top-surface of CoSi2 into cobalt fluoride; while the annealing reduces the fluoride into metallic Co nanoparticles. We have optimized this cyclic RIE process and determined that the catalyst density can be doubled in three cycles, resulting in a final CNT shell density of 6.6 × 10 11 walls·cm-2. This work demonstrates a very effective approach to increase the CNT density grown directly on silicides. © 2014 AIP Publishing LLC.
Resumo:
Molecular dynamics simulations with the Tersoff potential were used to study the response of twinned SiC nanowires under tensile and compressive strain. The critical strain of the twinned nanowires can be enhanced by twin stacking faults, and their critical strains are larger than those of perfect nanowires with the same diameters. Under axial tensile strain, the bonds of the nanowires are stretched just before failure. The failure behavior is found to depend on the twin segment thickness and the diameter of the nanowires. An atomic chain is observed for thin nanowires with small twin segment thickness under tension strain. Under axial compressive strain, the collapse of twinned SiC nanowires exhibits two different failure modes, depending on the length and diameter of the nanowires, i.e., shell buckling for short nanowires and columnar buckling for longer nanowires.